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Abstract

This study focuses on inventory control in a manufacturing system for a typical  
machine building enterprise, involving machine building, transport, storage bunker, 
and  assembly  line.  The  storage  bunker  faces  varying  disturbances  from  the 
assembly line, necessitating consistent product flow from machining and transport 
to prevent operational failures. However, the lack of an exact machining model and 
uncertainties  related  to  machine  failures  demand  an  adaptive  decision-making 
system, which has already been developed. In this paper, we propose a modified, 
more realistic approach, to estimate some properties of the machining model more 
accurately,  accounting for  uncertainties  due to  machine failures  and predictable, 
inconsistent  disturbances  from  the  assembly  line.  The  effectiveness  of  this 
mo*dified approach is demonstrated through simulation experiments.

Key words: Storage Bunker, Adaptive decision-making system, 
uncertainties.

1. Introduction

The in-process inventory control problem, initially introduced decades ago in 
Buchan  and  Koenigsberg’s  work  in  1963,  continues  to  be  a  subject  of 
considerable  interest  in  both  theoretical  and  practical  contexts.  Since  the 
pioneering studies of Simon (1952) and Yokoyama (1955), classical control 
theory has been employed as a valuable tool for managing manufacturing 
systems that involve in-process inventories. Significant advancements in this 
research area  have been achieved by Axsater  (1985),  Kuntsevich (1973), 
Shin  et al. (2008), Skurikhin (1972), Wiendahl and Breithaupt (2000), and 
further extended by Azarskov et al. (2006) and Zhiteckii et al. (2007), who 
investigated dynamic processes in typical production control systems.

In  recent  times,  novel  results  from modern  control  theory  have  inspired 
various  approaches  to  address  manufacturing  control  problems.  These 
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approaches  encompass  linear  programming  and  dynamic  programming, 
robust  and adaptive control  concepts,  genetic  algorithms,  Li-optimization, 
and more, as discussed in 

the  works  of  Aharon  et  al. (2009),  Azarskov  et  al. (2013),  Bauso  et  al. 
(2006),  Boukas  (2006),  Grubbstrom  and  Wilmer  (1996),  Hennet  (2003), 
Hoberg  et  al. (2007),  Ignaciuk  and  Bartoszewic  (2010),  Kostio  (2009), 
Rodrigues and Boukas (2006), Taleizadeh  et al. (2009), and Towill  et al. 
(1997).

Achieving a perfect inventory control for manufacturing systems requires an 
exact  mathematical  model  concerning  machining  (Skurikhin,  1972). 
However, in practice, only an approximate model of machining is available 
for decision-making systems, and the possibility of machine failures further 
introduces uncertainty into the order (reorder) policy formation (Azarskov et 
al., 2006; Zhiteckii et al., 2007).

In dealing with this uncertainty, modern control theory offers two primary 
approaches: the nonadaptive robust approach, as proposed by Sanchez-Pena 
and Szanier in 1998, and the adaptive approach introduced by Landau et al. 
in 1997. These methods aim to address the challenges posed by uncertainty 
and contribute to the development of effective inventory control strategies in 
manufacturing systems.

In this paper, the algorithm to estimate γ , an unknown constant that appears 
in  the  adaptive  inventory  control  model  by  Azarskov  et  al. (2017),  is 
modified, addressing the ambiguities and inconsistencies that appear in the 
original  paper.  On  top  of  that,  the  proposed  approach  requires  a 
supplementary estimation algorithm for  γmin,  another unknown constant in 
the adaptive inventory control model. The main contribution of this paper is 
that  the  proposed  estimation  algorithms  can  be  used  in  other  inventory 
control models that use these unknown constants.

2. Inventory Control System

2.1 The Basics

The  in-process  inventory  control  system,  as  developed  in  Buchan  and 
Koenigsberg (1962,  chapter  22),  of  a  typical  machine  building enterprise 
which includes machining, transportation, storage bunker and assembly line 
operates as follows. At the start of each interval, t=tn=nT 0, where T 0 is the 
duration of each interval, the decision making system requests the current 
product  stock  level,  H ( t ),  that  is,  H (tn )=H n.  Then  it  determines  the 
deviation of H n from the safety stock level r0 as expressed by

en=r0−H n \(in units\) .
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Then the decision making system places an order (reorder) θn, which defines 
the volume of product that has to be produced during the planning interval 
tn ≤ t ≤ tn+1 according to the rule

θn={θmax if θn
c>θmax ,

θn
c if 0≤ θn

c ≤ θmax , \(in units\)

0 if θn
c<0 ,

where  θmax is the maximum order volume that can be produced during the 
time  interval  tn ≤ t ≤ tn+1 with  all  available  manufacturing  resources  at  its 
maximum capacity, and  θn

c defined by a given order policy. The simplest 
order policy (Kuntsevich, 1973; Shurikhin, 1972) is given by

θn
c=en \(in units\) .

Then  the  decision  making  system  determines  the  production  capacity 
necessary to produce the order volume θn, as expressed by

qn=q (θn ) ,

where  q is  a  vector-valued  operator,  and  formally  gives  an  operation 
schedule for each machine.

At  the  end  of  the  time  interval  [ tn , tn+1 ],  the  product  fabricated  by  the 
machining can be represented as

Qn+1=Pn ,n+1 (qn )−ξn ,n+1 \(in units\)

where Pn ,n+1 is a time varying operation and ξn ,n+1 is an additive non-
negative noise (ξn ,n+1 ≥ 0 ) introduced due to machine failure during the time 

interval tn ≤ t ≤ tn+1.

Fig. 1. Block diagram of inventory control system where the controller parts 
1 and 2 form the decision making system. The plant consists of machining 

(M), transportation (T) and storage bunker (SB). The storage bunker is 
subjected to the external disturbance coming from the assembly line (AL).
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As in Azarskov et al. (2006), Shurikhin (1972) and Zhiteckii et al. (2007), it 
is assumed that the product is then transported to the storage bunker with a 
time delay τ<T 0 at the time instant t=tn+1+τ . Then the product is taken from 
the storage bunker to the assembly line based on the demands coming from 
there, with a rate k ( t ) ≥ 0. So, the product stock level H ( t ) slowly decreases 
at all times until the lot size of  Qn+1 arrives from the machining and  H ( t ) 
increases step-wise.

Fig. 2. A typical inventory history over the time interval [ tn+1 , tn+2 ].

During the time period [ tn+1 , tn+2 ], the lot size taken from the storage bunker 
on the demand of assembly line can be written as

Δ~Qn+1 ,n+2=∫
n+1

n+2

k ( t ) dt \(in units\)

where,  k ( t )=0 if and only if  H ( t )=0 since  H ( t ) cannot be negative. The 
inventory level at the time instant tn+2=(n+2 ) T 0 can then be given by

H n+2=H n+1−Δ~Qn+1 ,n+2+Qn+1 .

Note  that  Δ
~Qn+1 ,n+2 and  Δ

~Qn+2 ,n+3 can  exactly  be  predicted  for  some 
variables  Δ~Q [n+i , n+i+1 ] (i=1 ,2 ) at  each  n utilizing  a  technique  from 
Azarskov et al. (2006). Also note that it can be assumed that Δ

~Qn+1 ,n+2 can 
vary with n.

The  mathematical  model  of  the  in-process  inventory  control  system  is 
defined by the equations (1)-(7).

2.2 Features of the System

Similar to Azarskov  et al. (2017), equation (5) together with equation (4) 
yields

Qn+1=Pn ,n+1 (qn (θn ) )−ξn ,n+1 ,
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which means Qn+1≠ θn even when ξn ,n+1=0 because the machining model is 
not exact. Define

γn=
Pn ,n+1 (qn (θn ) )

θn

≤1 .

Using (9), (8) can be rewritten as

Qn+1=γn θn−ξn ,n+1 .

Ideally, γn=1 and ξn ,n+1=0, which yields Qn+1=θn.

Suppose  γn is  a  random  coefficient  with  possibly  nonstochastic  nature 
(Zhiteckii, 1996) and changes within the interval

γmin ≤ γn ≤1 ,

where γmin is the unknown lower bound to γn. Further, let

0≤ ξn ,n+1 ≤ ξ́ ,

where ξ́ is the known upper bound to ξn ,n+1.

Accoding to Azarskov et. al. (2017), the production at the end of the interval 
[ tn , tn+1 ] can be written as

Qn+1=γ θn−ξ́ /2+vn ,n+1 ,

where  γ  is  a  unknown  constant  and  vn ,n+1 is  an  equivalent  virtual 
symmetrical noise satisfying

|vn ,n+1|≤ ε

and

ε ≤ [ (1−γmin )θmax+ ξ́ ]/2 .

However, the use of the constant term ξ́ /2 in (1) is ambiguous. Besides, the 
assumption that upper bound of ε in (3) for all  θn is a constant is, although 
logically correct, unrealistic. We will try to address these issues.

Modifying (1), we get,

Qn+1=γ θn+vn ,n+1 ,

            where, |vn ,n+1|≤ ε ,  and ε=[ (1−γmin )θn+ ξ́ ]/2 .

Since γmin is unknown, ε is also unknown. (16) and (17) are visually depicted 
in Fig. 3.
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Fig. 5. Illustration of the modified production process. Note that the visual 
interpretation of the production process is identical to the one proposed in 

Azarskov et al. (2017).

2.3 Control Objective

The control performance index,

J= lim
n→∞

|en| ¿

evaluates  the  ultimate  behavior  of  the  control  system  (1)  -  (7)  for  all 
sufficiently large n.

The  aim  of  the  control  system  is  to  form  the  reorder  policy  yielding 

θn=θ1 ,θ2 ,θ3 ,… minimizing J  according to  J →min
{θn }

with the uncertainties of the form (10) and (11) present.

3. Main Result

3.1 Modified Adaptive Estimation Algorithm

The modified adaptive estimation algorithm proposed here for estimating the 
unknown constants γ  and γmin is directly inspired by the adaptive algorithm 
advanced in Azarskov et al. (2017). Similar to that approach, expanding the 
inequality in (17) yields

|Qn+1−γ θn|≤ ε ,

and recursively solving (21) yields

                                      
(Qn+1−ε )

θn

≤ γ ≤
(Qn+1+ε )

θn

,which produces the set 

membership estimation procedure of the form
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γ (n+1 )={ γ (n ) for θn<0  or γ (n ) ≥ (Qn+1−ε ) /θn ,

(Qn+1−ε ) /θn otherwise,

γ́ (n+1 )={ γ́ (n ) for θn<0  or γ́ (n ) ≤ (Qn+1+ε ) /θn ,

(Qn+1+ε ) /θn otherwise

when γ (n+1 ) ≤ γ́ (n+1 ). If (23) causes γ (n+1 )> γ́ (n+1 ),

γ (n+1 )=γ (0 ) , γ́ (n+1 )= γ́ (0 ) .

Since γmin is unknown, define

γmin ' (n+1 )={ γmin (n ) for γmin (n ) ≤ (Qn+1+ ξ́ )/θn

(Qn+1+ ξ́ )/θn otherwise ,

where γmin (n ) is the current best estimation of γmin. Furthermore,

γmin ″ (n+1 )={ γmin (n ) if γ (n+1 ) ≤ γ́ (n+1 )
γmin (n )−Δ otherwise ,

where the constant Δ>0 is a small enough positive number chosen by the 
designer. Also define

γmin (n+1 )={γmin ' (n+1 ) if γmin (n ) ≥ γmin ″ (n+1 ) ≥ γmin ' (n+1 ) ,
γmin ″ (n+1 ) if γmin (n ) ≥ γmin ' (n+1 ) ≥ γmin ″ (n+1 )

γmin (n ) otherwise.

Inspired by Zhiteckii (1996), the point estimation procedure used for 
deriving γ (n ) is

γ (n+1 )={ γ (n ) if |Sn|≤ ε ' (n )
γ (n )−(Sn−ε (n ) ) /θn if Sn>ε ' (n )
γ (n )−(Sn+ε (n ) ) /θn if Sn←ε ' (n )

                                  where, Sn=γ (n ) θn−Qn+1is the current identification 
error and   ε ' (n )=ε (n )+Δ'

Here,  Δ'>0 is a sufficiently small positive constant chosen by the designer 
as in Zhiteckii (1996).

3.2 Adaptive Reorder Policy

The reorder policy developed by Azarskov et al. (2013) as given by

θn
c=(en+Δ~Q [n ,n+1 ]+Δ~Q [n+1 , n+2 ]−γ θn−1 )/γ
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is  used here,  where  Δ
~Q [n ,n+1 ] ≡ Δ~Qn ,n+1 and  Δ

~Q [n+1 , n+2 ] ≡ Δ~Qn+1 ,n+2. 
The difference is that γ  is replaced by γ (n ) forming

θn
c=(en+Δ~Q [n ,n+1 ]+Δ~Q [n+1 , n+2 ]−γ (n ) θn−1 )/γ (n ) .

Contrary to Azarskov et al. (2013), θn is defined by (2).

3.3 Post Adaptation Stage

After the adaptation stage defined by (23) - (30) and (32) is complete, the 
estimate values for γ  and γmin can be determined by taking the mode of their 
respective values obtained during the adaptation stage for sufficiently large n
.  The assumption is  that  the  model  for  estimating  γ  and  γmin is  accurate 
enough that the deviations from the mode can be considered outliers and can 
be explained by the absence of exact machining model and uncertainties due 
to  the  likelihood  of  machine  failure.  The  algorithm  will  produce  more 
accurate estimations for γ  and γmin for larger values of n.

4. Simulation
A simulation was run to demonstrate the adaptive stage defined by (23) - 
(30) and (32) as well as the post adaptation inventory control. The simulation 
program (see Appendix A for source code) was set  up by taking  r0=40, 
θmax=50, ξ́=10 and 10 ≤ Δ~Qn ,n+2 , Δ~Qn+1 ,n+2 ≤ 20.
For the adaptive estimation algorithm to run most effectively, the values for 
some  of  the  starting  variables  were  set  to  their  suitable  bounds,  that  is, 
γ (0 )=0, γ́ (0 )=1 and γmin (0 )=1.
The  other  relevant  starting  variables  were  γ (0 )=1,  θ0=40,  Δ=0.05 and 

Δ'=0.0001. The exact value of γmin for this simulation was set to 0.7.

Fig. 6:  γ (n ) vs n. Adaptive estimation for γ . 
The blue, green and orange lines represent 
γ́ (n ), γ (n ) and  respectively. The algorithm 

yields γ=0.67, which is a reasonable 
estimation based on the exact value of γmin.

Fig. 7:  γmin (n ) vs n. Adaptive estimation for 
γmin. The algorithm yields γmin=0.71, which is 

a reasonably accurate estimation since it 
deviates only slightly from the exact value of 

γmin.
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.

Conclusion

The adaptive estimation algorithm for γ  and γmin can be used for developing 
inventory  control  systems  that  exploits  these  unknown  constants.  The 
proposed algorithm is expected to work with any reorder policy, however 
more research has to be put into this matter.

References

[1] Aharon, Ben-Tal, Golany Boaz, and Shtern Shimrit. ‘Robust Multi-
Echelon Multi-Period Inventory Control’. European Journal of 
Operational Research 199, no. 3 (2009): 922–35. 
https://doi.org/10.1016/j.ejor.2009.01.058. 

Fig. 8. θn vs n. Post adaptation order volume.

Fig. 9. Qn vs n. Post adaptation production 
volume.

Fig. 10. H n vs n. Post adaptation stock 
level.

Fig. 11. en vs n. Deviation of product stock 
level from safety stock value post 

adaptation.



Sushanta K. Roy Sushanta K. Roy                                                       10

[2] Axsater, Sven. ‘Control Theory Concepts in Production and 
Inventory Control’. International Journal of Systems Science 16, no. 
2 (1985): 161–69. https://doi.org/10.1080/00207728508926662. 

[3] Azarskov, Valerii N., Leonid S. Zhiteckii, Klavdia Yu Solovchuk, 
Olga A. Sushchenko, and Roman O. Lupoi. ‘Inventory Control for a 
Manufacturing System under Uncertainty: Adaptive Approach’. 
IFAC-PapersOnLine 50, no. 1 (2017): 10154–59. 
https://doi.org/10.1016/j.ifacol.2017.08.1762. 

[4] Azarskov, V. N., L. S. Zhiteckii, R. O. Lupoi, and O. O. Oliinyk. ‘On 
a Decision-Making Problem within the Man-Machine Control 
System of an Enterprise’. Kibernetika i Vychislitel’naya Tekhnika 
151 (2006): 49–59.

[5] Azarskov, Valerii N., Vladimir I. Skurikhin, Leonid S. Zhiteckii, and 
Roman O. Lypoi. ‘Modern Control Theory Applied to Inventory 
Control for a Manufacturing System’. IFAC Proceedings Volumes 
46, no. 9 (2013): 1200–1205. https://doi.org/10.3182/20130619-3-ru-
3018.00463. 

[6] Bauso, Dario, Franco Blanchini, and Raffaele Pesenti. ‘Robust 
Control Strategies for Multi–Inventory Systems with Average Flow 
Constraints’. Automatica 42, no. 8 (2006): 1255–66. 
https://doi.org/10.1016/j.automatica.2005.12.006. 

[7] Boukas, E. K. ‘Manufacturing Systems: LMI Approach’. IEEE 
Transactions on Automatic Control 51, no. 6 (2006): 1014–18. 
https://doi.org/10.1109/tac.2006.876945. 

[8] Buchan, Joseph, and Ernest Koenigsberg. Scientific Inventory 
Management. Prentice-Hall, 1963.

[9] Grubbström, Robert W., and Joakim Wikner. ‘Inventory Trigger 
Control Policies Developed in Terms of Control Theory’. 
International Journal of Production Economics 45, no. 1–3 (1996): 
397–406. https://doi.org/10.1016/0925-5273(96)00018-7. 

[10] Hennet, Jean-Claude. ‘A Bimodal Scheme for Multi-Stage 
Production and Inventory Control’. Automatica 39, no. 5 (2003): 
793–805. https://doi.org/10.1016/s0005-1098(03)00026-8. 

[11] Hoberg, Kai, James R. Bradley, and Ulrich W. Thonemann. 
‘Analyzing the Effect of the Inventory Policy on Order and Inventory 
Variability with Linear Control Theory’. European Journal of 
Operational Research 176, no. 3 (2007): 1620–42.  
https://doi.org/10.1016/j.ejor.2005.10.040. 

[12] Ignaciuk, Przemysław, and Andrzej Bartoszewicz. ‘Linear–Quadratic 
Optimal Control Strategy for Periodic-Review Inventory Systems’. 



An Efficient Approach for Estimating unknown                              11

Automatica 46, no. 12 (2010): 1982–93. 
https://doi.org/10.1016/j.automatica.2010.09.010. 

[13] Kostić, Konstantin. ‘Inventory Control as a Discrete System Control 
for the Fixed-Order Quantity System’. Applied Mathematical 
Modelling 33, no. 11 (2009): 4201–14. 
https://doi.org/10.1016/j.apm.2009.03.004. 

[14] Kuntsevich, V. M. ‘On a Problem of Control in the Automated 
Control Systems of Enterprises’. Upravlyayushchie Sistemy i 
Mashiny 5 (1973): 14–15.

[15] Landau, Yoan D., R. Lozano, Mohammed M’Saad, and Alireza 
Karimi. Adaptive Control. Springer, 2013.

[16] Rodrigues, Luis, and El-Kebir Boukas. ‘Piecewise-Linear Controller 
Synthesis with Applications to Inventory Control of Switched 
Production Systems’. Automatica 42, no. 8 (2006): 1245–54. 
https://doi.org/10.1016/j.automatica.2006.04.004. 

[17] Qu, Zhihua. Robust Control of Nonlinear Uncertain Systems. Wiley, 
1998.

[18] Shin, Joonho, Jongku Lee, Seungyoung Park, Kee-Kahb Koo, and 
Moonyong Lee. ‘Analytical Design of a Proportional-Integral 
Controller for Constrained Optimal Regulatory Control of Inventory 
Loop’. Control Engineering Practice 16, no. 11 (2008): 1391–97. 
https://doi.org/10.1016/j.conengprac.2008.04.006. 

[19] Simon, Herbert A. ‘On the Application of Servomechanism Theory 
in the Study of Production Control’. Econometrica 20, no. 2 (1952): 
247. https://doi.org/10.2307/1907849. 

[20] Taleizadeh, Ata Allah, Seyed Taghi Niaki, and Mir-Bahador 
Aryanezhad. ‘A Hybrid Method of Pareto, TOPSIS and Genetic 
Algorithm to Optimize Multi-Product Multi-Constraint Inventory 
Control Systems with Random Fuzzy Replenishments’. Mathematical 
and Computer Modelling 49, no. 5–6 (2009): 1044–57. 
https://doi.org/10.1016/j.mcm.2008.10.013. 

[21] Towill, D. R., G. N. Evans, and P. Cheema. ‘Analysis and Design of 
an Adaptive Minimum Reasonable Inventory Control System’. 
Production Planning &amp; Control 8, no. 6 (1997): 545–57. 
https://doi.org/10.1080/095372897234885. 

[22] Wiendahl, Hans-Peter, and Jan-Wilhelm Breithaupt. ‘Automatic 
Production Control Applying Control Theory’. International Journal 
of Production Economics 63, no. 1 (2000): 33–46. 
https://doi.org/10.1016/s0925-5273(98)00253-9. 



Sushanta K. Roy Sushanta K. Roy                                                       12

[23] Yokoyama, T. ‘A Note on Discrete Servo Theory in Inventory 
Control’. Industrial Administration Research Memorandum 1 (1955): 
1–3.

[24] Skurikhin, V. I. ‘On Dynamical Processes Arising in the Automated 
Control Systems of Enterprises’. Upravlyayushchie Sistemy i 
Mashiny 1 (1972): 35–41.

[25] Zhiteckii, L. S. ‘Adaptive Control of Systems Subjected to Bounded 
Disturbances’. In Bounding Approaches to System Identification, 
383–407. Plenum Press, 1996.

[26] Zhiteckii, L. S., R. O. Lupoi, and O. O. Oliinyk. ‘On Dynamical 
Processes in Controlling a Typical Junction of Manufacturing 
Network of a Factory with Discrete Production’. Upravlyayushchie 
Sistemy i Mashiny 2 (2007): 39–47.

Appendix A Simulation Source Code

import random
from matplotlib import pyplot as plt
from statistics import mode

def thetan(r0, h_n, qn_n1, qn1_n2, theta_max, theta_n1, 
gamma_n):
    e_n = r0 - h_n
    theta_c = (e_n + qn_n1 + qn1_n2 - gamma_n * 
theta_n1)/gamma_n
    # theta_c = (e_n + 30 - gamma_n * theta_n1) / 
gamma_n
    if theta_c > theta_max:
        return theta_max
    elif theta_c < 0:
        return 0
    else:
        return theta_c

def gammanLower(gamman_l, theta_n, epsilon_n, q_n):
    if theta_n != 0:
        beta = (q_n - epsilon_n)/theta_n
        if gamman_l >= beta:
            return gamman_l
        else:
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            return beta
    else:
        return gamman_l

def gammanUpper(gamman_u, theta_n, epsilon_n, q_n):
    if theta_n != 0:
        beta = (q_n + epsilon_n)/theta_n
        if gamman_u <= beta:
            return gamman_u
        else:
            return beta
    else:
        return gamman_u

def gammaMin1(gamma_min, q_n1, xi_max, theta_n):
    if theta_n != 0:
        if gamma_min <= (q_n1 + xi_max)/theta_n:
            return gamma_min
        else:
            return (q_n1 + xi_max)/theta_n
    else:
        return gamma_min

def gammaMin2(gamma_min, gamman_l, gamman_u, delta):
    if gamman_l <= gamman_u:
        return gamma_min
    else:
        return gamma_min - delta

def gamman(gamma_n, theta_n, q_n1, epsilon, delta):
    if theta_n != 0:
        s_n = gamma_n*theta_n - q_n1
        epsilon_prime = epsilon + delta
        if abs(s_n) <= epsilon_prime:
            return gamma_n
        elif s_n > epsilon_prime:
            return gamma_n - (s_n - epsilon)/theta_n
        else:
            return gamma_n - (s_n + epsilon)/theta_n
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    else:
        return gamma_n

def main():
    r0 = 40
    theta_max = 50
    xi_max = 10
    theta_n = 40
    dq_lower = 10
    dq_upper = 20
    qn_n1 = random.randint(dq_lower, dq_upper)
    gamma_min_n = 1
    real_gamma_min = 0.7
    gamman_l = 0
    gamman_l0 = gamman_l
    gamman_u = 1
    gamman_u0 = gamman_u
    gamman_n = 1
    delta = 0.05
    delta_prime = 0.0001
    upper = [gamman_u]
    lower = [gamman_l]
    gamma_n = [gamman_n]
    theta_n_list = [theta_n]
    q_list = []
    ht_0 = 10
    ht_list = [ht_0]
    e_list = []
    gamma_min_list = [gamma_min_n]
    for i in range(40):
        qn1_n2 = random.randint(dq_lower, dq_upper)
        theta_n = thetan(r0, ht_0, qn_n1, qn1_n2, 
theta_max,
                         theta_n, gamman_n)
        # theta_n_list.append(theta_n)
        epsilon_n = ((1 - gamma_min_n) * theta_n + 
xi_max)/2
        if theta_n != 0:
            noise = random.randint(0, xi_max)
            q_n1 = theta_n * 
random.uniform(real_gamma_min, 1)
            while q_n1 - noise < 0:
                noise = random.randint(0, xi_max)
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            q_n1 = q_n1 - noise
        else:
            q_n1 = 0
        # q_list.append(q_n1)
        gamman_u = gammanUpper(gamman_u, theta_n, 
epsilon_n, q_n1)
        gamman_l = gammanLower(gamman_l, theta_n, 
epsilon_n, q_n1)
        if gamman_l > gamman_u:
            gamman_l = gamman_l0
            gamman_u = gamman_u0
        upper.append(gamman_u)
        lower.append(gamman_l)
        gamma_min_n1 = gammaMin1(gamma_min_n, q_n1, 
xi_max, theta_n)
        gamma_min_n2 = gammaMin2(gamma_min_n, gamman_l, 
gamman_u, delta)
        if gamma_min_n >= min(gamma_min_n1, 
gamma_min_n2):
            gamma_min_n = min(gamma_min_n1, 
gamma_min_n2)
        gamma_min_list.append(gamma_min_n)
        gamman_n = gamman(gamman_n, theta_n, q_n1,
                          epsilon_n, delta_prime)
        gamma_n.append(gamman_n)
        ht_0 = ht_0 - qn1_n2 + q_n1
        # ht_list.append(ht_0)
        # e_list.append(abs(r0 - ht_0))
        # qn_n1 = qn1_n2

    gamman_n = mode(gamma_n)

    for i in range(40):
        qn1_n2 = random.randint(dq_lower, dq_upper)
        theta_n = thetan(r0, ht_0, qn_n1, qn1_n2,
                         theta_max, theta_n, gamman_n)
        theta_n_list.append(theta_n)
        if theta_n != 0:
            noise = random.randint(0, xi_max)
            q_n1 = theta_n * 
random.uniform(real_gamma_min, 1)
            while q_n1 - noise < 0:
                noise = random.randint(0, xi_max)
            q_n1 = q_n1 - noise
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        else:
            q_n1 = 0
        q_list.append(q_n1)
        ht_0 = ht_0 - qn1_n2 + q_n1
        ht_list.append(ht_0)
        e_list.append(abs(r0 - ht_0))
        qn_n1 = qn1_n2

    print(upper)
    print(lower)
    print(gamma_n)
    print(gamman_n)
    print(mode(gamma_min_list))

    plt.plot(upper)
    plt.plot(lower)
    plt.plot(gamma_n)
    plt.show()
    plt.plot(theta_n_list)
    plt.show()
    plt.plot(q_list)
    plt.show()
    plt.plot(ht_list)
    plt.show()
    plt.plot(e_list)
    plt.show()
    plt.plot(gamma_min_list)
    plt.show()

if __name__ == "__main__":
    main()
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