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Abstract 

In this paper, we study a general form of third order nonlinear partial 

differential equation known as Korteweg-de Vries (KdV) equation. A traveling 

wave solution method is discussed for analytic solution of the general form of 

KdV equation. In order to understand the effect of convection and dispersion 

terms of the equation we present a numerical evaluation of the analytical 

solution for various values of convection and dispersion coefficients. Finite 

difference scheme for the numerical solution of the KdV equation is 

investigated and stability condition for a first-order scheme using convex 

combination method is determined. Von Neumann stability analysis is 

performed to determine the stability condition for a second order scheme. We 

present error estimation of the numerical schemes and verify qualitative 

behavior of the KdV equation. 

Keywords: KdV Equation, Non-Conservative Form, Solitary Wave, Finite 

Difference Scheme. 

1. Introduction 

Waves are created on the sea or profound surface and naturally, they are 

playing an attractive and noticeable phenomenon that impacts every aspect 

of life on the earth. As for this, one needs to include this winsome 

experience into mathematical models and analysis. In the year of 1895, 

before all, Korteweg and de Vries [1] developed the Korteweg-de Vries 

(KdV) equation to model weakly nonlinear waves. This KdV equation has 

been used in various fields such as water wave [2], plasma physics [3], 

bubble-liquid mixture [4] and so on. It is also apposite to pulse wave 

propagation in blood vessels. The solution of the KdV equation is identical 

to as soliton, and it is recently found that signals carry within neurons in 

the form of solitons [5,6,7]. These solitons may take place in proteins and 

DNA (deoxyribonucleic acid) [8] where they are related to low-frequency 

collective motion.  
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Zabusky and Kruskal [9] obtained the numerical solution of the KdV 

equation in the year of 1965.  Furthermore to solve the KdV equation 

numerically, there are several methods have been discussed in various 

paper. Investigation of Finite Difference Method (FDM) with sufficient 

accuracy for the KdV equation was undertaken. First-order and second-

order scheme in non-conservative forms for the KdV equation is studied 

for investigation.  A second-order ZK finite difference scheme (ZK scheme) 

is preferred by Zabusky and Kruskal in [10]. This scheme is considered for 

non-conservative form and the convection velocity is calculated by the 

average of the three neighboring grid points. However, in [14] we found a 

second order conservative form shows more accurate result than ZK non-

conservative scheme [10]. In this paper, we perform a comparative study to 

understand the accuracy of the second order non-conservative form of the 

KdV equation. Here also we will discuss the traveling wave solution 

method for the analytical solution of the general form of the KdV equation. 

At first, the analytic solution of the KdV equation is discussed. Then 

explicit finite difference schemes for the numerical solution of the KdV 

equation is investigated and the stability conditions for the first and second 

order schemes are determined. Zabusky and Kruskal scheme is also 

presented in the same section. After that, the verification of the effects of 

convection and dispersion terms is discussed. Numerical results and 

explanation of graphical representations for various cases are discussed 

sequentially. At the end, some references are given. 

2. Analytic Solution of the KdV Equation 

The third order general form of nonlinear KdV equation is  

  

  
   

  

  
  

   

   
                                                                                      ( ) 

Here   and   are represent nonlinear and dispersion coefficients 

respectively. The equation has two separate terms: one is convection term 

and other is dispersion term. Here nonlinear term with nonlinear coefficient 

is called convection term and third order term with dispersion coefficient 

illustrating dispersion term. Analytic or exact solution of the KdV equation 

is discussed based on [11,12] where use a traveling wave solution method 

for finding the solution.  
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Consider a traveling wave solution of the form   (   )   ( ) for    
    , and     where,   is the speed of the wave. Therefore,  (   )  
 (    ).  

Now, we can write 
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all these in Equation ( ), and then integrating with respect to  , we get 
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constant goes to be zero due to decay conditions of  , we have     
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The real solution exist only if (  )     that is, (
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Using separation variable, we get 
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To evaluate the integral on the left hand side of ( ) , we substitute 
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Here speed propagation of the wave is perform by  , this is proportional to 

the amplitude 
  

 
 that is, speed propagation is linearly related to the 

amplitude. For getting real and positive solution also for right movement   
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goes to be positive (   ) .    represents propagating constant. For 

increasing    wave propagates left to right and wave moves right to left for 

decreasing   . The action of the dispersion and nonlinear terms are 

observed from exact solution. The width of the wave gradually spread out 

for gradual increase of the dispersion coefficient and reverse effect founded 

for decreasing, which is the effect of dispersion term. On the other hand, if 

value of the nonlinear coefficient is step by step increased then amplitude 

of the wave is gradually decreasing and for decreasing nonlinear 

coefficient, amplitude of the wave increasing which is effect of nonlinear 

term. 

3. Finite Difference Methods of the KdV Equation 

In this section, numerical solution for the KdV equation is investigated by 

explicit finite difference schemes. Zabusky and Kruskal presented a 

second-order explicit finite difference scheme (ZK scheme) for the KdV 

equation in [10] where the scheme is considered in non-conservative form 

and the convection velocity is considered the average of the three 

neighboring grid points. For further investigation first and second order 

schemes for non-conservative form is studied. Use convex combination 

method to find the stability condition of the first order scheme and Von 

Neumann stability analysis is presented for second order scheme. Here 

equal grid size is taken into consideration in these schemes.  

3.1. (i) First Order Scheme with Stability Condition  

Forward discretization of the time derivative, a backward discretization of 

the first order space derivative and second-order central difference in third 

order space derivative (FTBSCS technique) is considered to obtain the 

first-order scheme. The discrete form of KdV Equation (1) reads as: 
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This is an explicit finite difference scheme for the KdV equation in non-

conservative form.  

For determining the stability condition of the first order scheme (non-

conservative form) use convex combination method.  Here consider 
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Now Scheme (4) reads as:  
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From above all the coefficients are positive and sum them is one so convex 

combination is applicable. Neumann Boundary Conditions      
      

  and   

    
      

  are used. 

Therefore   
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Since sum of all coefficients is one, then by the rule of convex combination,  

  (    )    ;    (     )    and        

And hence the stability conditions are      and      , where         . 

From above conditions we have two relations  
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3.2. (ii) Second Order Scheme with Stability Condition 

Second order central difference in both time and space derivatives (CTCS 

technique) are performed for second order scheme. Then the KdV Equation 

(1) reads as: 
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This is second-order explicit central difference scheme for KdV equation in 

non-conservative form.  

Von Neumann stability analysis [11] is used for finding the stability 

condition of the second order non-conservative scheme. Consider   
  

         , insert Scheme (5) 
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Canceling    
           from both sides, using Euler’s formula, and 

letting       , then  
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Therefore          is obtained, upon which multiplication by  ,  

            
Now using quadratic formula 
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To obtain maximum value which   attains, let      (  )      ( ) 

and solve for the value of   for which 
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For stability | |    and so the stability region satisfy the inequality 
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3.3. (iii) Zabusky and Kruskal Scheme and Stability Condition 

Zabusky and Kruskal (ZK) scheme is derived by central difference 

approximations for both space and time and the Equation (1) is a follows 
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In fact, this scheme is a modification of the Scheme (5), where the 

convection velocity   
  is taken by 

.    
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. This scheme is a three-

level scheme and second-order accurate in time. The truncation error is of 
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order ( (  )   (  ) ). The linear stability condition for this scheme is 

following to (subsection ii). The stability condition is as follows: 
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Where      is the maximum value of   depending on the amplitude of 

solitons. 

4. Verification of the Effect of Convection and Dispersion Terms  

In exact solution the effect of the nonlinear and dispersion term already 

mentioned. Now these effect are need to verify by numerical solution. In 

this section, for the justification of the both terms we use Scheme (5). At a 

fixed time,        and for different values of    and  , we present the both 

effect where           and         are used. In this case, space     

to    and time   to 1 are considered. For fixed   (  ), we change the 

value of   (        ) taking respectively, which represents the effect of 

convection term.  Again, for fixed   (  ), we take the values of   ( 
     ) respectively, which represents the effect of the dispersion term. 

 

Figure 1. Analytical Solution of the KdV Equation for     and    . 
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Figure 2. Analytical Solution of the KdV Equation for     and    . 

 

 

 

 

 

Figure 3. Effect of non-linear term at time,      . 
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Figure 4. Effect of dispersion term at time,      . 

 Figure 1 and Figure 2 represent the analytical solution of the KdV 

equation for    ,     and    ,     respectively. Figure 3 

represents the effect of nonlinear coefficient where for increasing the value 

of nonlinear coefficient the height of the wave decreasing. Here for fixed 

   , we consider          respectively. From Figure 4 it is observed 

that for fixed     and considering         (increasing) respectively, 

the width of the wave is spreading at the time,        which shows the 

effect of the dispersion term. 

5. Numerical Presentation   

An error estimation of the explicit finite difference schemes is presented in 

this section. For error estimation    norm is used, defined by 

‖ ‖  
‖     ‖ 

‖  ‖  
 

for all time where    and    represent exact numerical solution 

respectively. Initial and boundary conditions are taken from the exact 

solution. As for zero boundary condition [13] of the exact solution at 

infinity, boundary value is approximately zero on the considered domain.  

Here errors are estimated for first-order non-conservative (FONC) and 

second-order non-conservative (SONC) forms. And then error comparing 

SONC form and ZK scheme for different values of    and   .  In exact 
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solution two sets of data are considered: one is                  

and the other case is                 . For both two sets of date, 

the numerical solution of the KdV equation for         and   
     are presented. These two cases are discussed unitedly. For 

numerical solution, taking            and            (for first order 

schemes) and            and            (for second order and Zk 

schemes). And for error estimation, different sets of     and     are 

considered, and     and    are considered. Graphical representations 

for various cases are given in (Figures 5 - 14). 

 

Figure 5. First order non-conservative form for        .  
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Figure 6. First order non-conservative form for        . 

  

 

Figure 7. Second order non-conservative form for        .  
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Figure 8. Second order non-conservative form for        . 

 

Figure 9. Error comparing of the first order non-conservative form (FONC Form) 

and second order non-conservative form (SONC Form) for        . 
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Figure 10. Error comparing of SONC Form and ZK Scheme for                                   

        where            and           . 

 

Figure 11. Error comparing of SONC Form and ZK Scheme for 

        where            and           . 
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Figure 12. Error comparing of SONC Form and ZK Scheme for 

        where             and           . 

 

 

 

 

Figure 13. Error comparing of SONC Form and ZK Scheme for 

        where             and           . 
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Figure 14. Error comparing of SONC Form and ZK Scheme for 

        where              and           . 

 

Table 1: Relative Errors and Percentages 

Figure       

Relative 

Error of 

SONF at 

t=1 

Relative 

Error of 

ZK 

Scheme at 

t=1 

Difference 

Between 

Relative 

Error 

Percentage 

of the 

Relative 

Error 

Time 

Elapsed 

(sec) 

Figure 10 0.0020 0.2000 0.0155 0.0090 0.0065 0.6488 0.995384 

Figure 11 0.0002 0.1000 0.0038 0.0021 0.0017 0.1707 3.262973 

Figure 12 0.00002 0.0374 5.2102e-04 2.8938e-04 2.3165e-04 0.0232 42.805090 

Figure 13 0.00001 0.0296 3.2556e-04 1.8579e-04 1.3977e-04 0.0140 57.891461 

Figure 14 0.000002 0.0174 1.2670e-04 7.4847e-05 5.1849e-05 0.0052 2158.678017 

6. Explanation of the Graphical Representations 

Figures 5 and 6 represent the numerical solution of the first order non-

conservative forms for         and         respectively. The 

figures show the amplitude of the waves decreasing for increasing time and 

width of the waves also spreading. Both are the effects of convection and 

dispersion terms respectively. Figures 7 and 8 represent the numerical 

solution of the second order non-conservative forms for         and 

        respectively. Having glanced at two figures, waves propagate 
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approximately same height and width, because the scheme is second order 

accuracy in both time and space and a solitary wave obtained by second 

order scheme. Figure 9 represents the Error comparing of FONC form and 

SONC Form for        . Here the error of first order scheme is so 

high. Because the low order of the first order scheme which is killing the 

accuracy of the higher order      approximation and the error is  (   ). In 

addition, first order scheme is unable to produce solitary waves. From 

Figure 9 we conclude that second order non-conservative is much better 

than first order non-conservative form.  

Figure 10 to Figure 14 represent error comparison between SONC form 

and ZK scheme for different values of    and   . Here all those 

comparison are computed for        . In In Figure 10, Figure 11, 

Figure 12, Figure 13, Figure 14 we use respectively                 
                         and corresponding             
                     respectively. We observed that error of SONC 

form is greater than ZK scheme. Table 1 represents the summarization of 

the relative errors of the both schemes and mention the percentage of the 

error. From above qualitative observation, it is seen that the error of the as 

for decreasing    and    the SONC form close to ZK scheme but it take 

more time for decreasing    and   .  

7. Conclusion 

In this paper, we have studied an analytic solution of the general form of 

nonlinear third order KdV equation by using traveling wave solution 

method. Explicit finite difference schemes for the numerical solution of the 

KdV equation have been investigated. The stability condition for the first-

order scheme using the convex combination method has been determined. 

Von Neumann stability analysis is performed to determine the stability 

condition for a second order scheme. The effects of convection and 

dispersion terms are being verified. The paper presents error estimations of 

the finite difference schemes and compared the schemes with ZK Scheme 

[10]. We have observed that second order conservative with non-form is 

close to ZK scheme. 
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