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Abstract 

Numerical integration methods are generally helpful to determine the integral 

value of a function for which the integration becomes difficult or when it is 

impossible to find out the exact integral value. The main objective of this paper 

is to determine the optimum number of partitions for various numerical 

integration methods so that these methods can give us the best approximate 

result. We have used these methods to get the optimum result in such a way 

that after setting initial partitions, these methods will automatically continue to 

take more additional partitions until the difference between two successive 

integral values will be less than the considered tolerance limit. For each of the 

methods, we have recorded the number of steps to get the optimum number of 

partitions along with their computational error and average CPU time. Among 

all the considered methods, Weddle’s rule outperformed compared to other 

methods because it has required less optimum number of steps and less average 

CPU time, and also produced a small amount of computational error to obtain 

the approximate integral value. The composite integration method also 

performed well for a large number of subdivisions. But one limitation of the 

method is that what number of subdivisions should be taken for a good result is 

not fixed in advance. After that, the order of the methods which performed well 

is Boole's rule, Simpson’s 3/8 rule, Simpson’s rule, Simpson’s 1/3 rule, 

Midpoint rule and Trapezoidal rule respectively. 

Keywords: Numerical integration; Optimum number of partitions; Tolerance 

limit; Computational error; Weddle’s rule.  

Introduction 

Numerical integration is a method of finding a definite integral in absence 

of closed-form expression for the integral or when difficult to find closed-

form integration or for unknown explicit function. More specifically, it 

consists of methods that help us to find the approximate area under a 

function plotted on a graph [1]. It has a wide range of applications in 

engineering, finance, statistics, actuarial science, biostatistics, etc. [1-6] 

and also used in estimation population abundance as an intermediate tool 
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[7]. Numerical integration also known as integral calculus is also needed 

for reconstruction of medical images [8] or in physics [9].  

In [10], three different methods of numerical integration such as midpoint 

rule, trapezoidal rule, and Simpson's rule were compared by using a few 

simple functions and calculated values for the various number of 

subintervals to find out which one is the most accurate and fastest, and the 

author found Simpson’s rule is the best one. The complexity of different 

types of algorithms was discussed in [11], and also in [12], [13] 

multidimensional integration ideas were considered. In [6], the authors 

proposed a new numerical integration method named composite numerical 

integration and compared it with some Newton-Cotes methods of 

integration, and found that this proposed method outperformed compared 

to other methods. The authors in [14] developed a mathematical simulator 

by combining Trapezoidal rule, Simpson’s 1/3 rule and Simpson’s 3/8 rule 

to solve numerical integration problems. In [6] most of the papers while 

using different numerical integration methods, the researchers used the 

rules that the number of segments for the Simpson’s 1/3 rule must be even, 

for Simpson’s 3/8 rule the number of segments must be a multiple of 3, for 

Boole’s rule the number of segments must be a multiple of 4 and for 

Weddle’s rule the number of segments must be a multiple of 6 and so on. 

Our objective is to determine the optimum number of segments or 

partitions for various numerical integration methods such as Trapezoidal 

rule, Simpson's 1/3 rule, Simpson's 3/8 rule, Simpson's rule, Boole's rule, 

Weddle's rule, and Composite integration rule so that it can give us correct 

results up to a certain decimal place. More specifically, if we use t as the 

initial number of partitions, then the algorithm will take more additional 

partitions to obtain the optimum value such that the difference between the 

two successive values will be less than a certain tolerance limit. 

Mathematically, suppose the initial number of partitions = t as per any rule 

in the first step. It will take more s additional steps or (     partitions to 

obtain the optimum value. Let the value of the (       step be      and 

    step has the value   . After starting with t partitions, the process will 

stop to take additional partitions when |       |    where   is a very 

small number called tolerance limit. To best of our knowledge, this is the 
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first study for obtaining the optimum number of partitions for various 

integration methods. 

Those functions which can’t be integrated analytically are evaluated by 

using several numerical integration methods such as General Gauss 

Legendre Quadrature, Newton-Cotes, Romberg integration, and Monte 

Carlo integration. General Gauss Legendre Quadrature methods use 

Newton’s forward interpolation formula. General Quadrature methods such 

as the Trapezoidal rule, Simpson’s 1/3 rule, Simpson’s 3/8 rule, Boole’s 

rule, and Weddle's rule are special cases of 1
st
, 2

nd
, 3

rd
, 4

th
 and 6

th
 order 

polynomials respectively.  

Given a set of data points (       (         (       of a function 

   (   where  (   is not known explicitly, it is required to compute the 

value of the definite integral 

   ∫  (    
 

 
 

A general formula for numerical integration can be derived by using 

Newton’s forward interpolation formula. Let the interval [   ] be divided 

into n equal subintervals such that               . So, we can 

write         .  

Approximating  (   by Newton’s forward interpolation formula we can 

write the above integral as 

    ∫  (    
  

  
 ∫    

     

  
 ∫ *∑ (

 
 
)     

 
   +   

     

  
 (1) 

where        , so       .When     ,     and      
      , then expression (1) can be written as 

   *    
  

 
    (

  

 
 

  

 
)

    

  
 (

  

 
      )

    

  
  + (2) 

The equation (2) is called General Gauss Legendre Quadrature formula. 

From this general formula, we can obtain different integration formulae by 

putting          , etc. 
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Existing Methods 

A brief description of the existing methods of numerical integration such as 

Trapezoidal rule, Simpson’s 1/3 rule, Simpson’s 3/8 rule, Boole’s rule, 

Weddle's rule, Midpoint rule, Simpson's rule, and Composite integration 

method are given below. 

Trapezoidal Rule 

Substituting     in the expression (2) and neglecting all differences greater 

than the first we get 

    ∫  (    
    

  
 ∫    

    

  
  (   

 

 
   )   (   

     

 
)  

 

 
(       

In general 

   ∫    
     

   (     
 

 

 
(                     

Thus  
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[(        (             ]  

This is known as Trapezoidal rule and can be applied to any number of 

subintervals odd or even. 

Simpson’s 1/3 Rule  

Putting     in the General quadrature formula given by (2) and 

neglecting all differences greater than second we get 

   ∫    
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In general  

     ∫     
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where n is even. 
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Thus  

   ∑   
 

     
 

 
∑ (              

 
      

 
 

 
[(        (               (             ]  

Simpson’s 3/8 Rule 

Substituting     in the General Quadrature formula given by (2) and 

neglecting all differences greater than the third we get 

   ∫    
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In general  

     ∫     
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where n is a multiple of 3. 

Thus  

   ∑          
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Boole’s Rule 

Substituting     in the General Quadrature formula given by (2) and 

neglecting all differences greater than the fourth we get 

   ∫    
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In general 

     ∫     
  

  
(                                

     

   (     
   



68 Rahman et. al. 

where     (            and n is multiple of 4. 

Thus  

  ∑          
  

  
∑ (                               

 
     

  = 
  

  
[ (         (              

       (                (             ]  

Weddle’s Rule 

Substituting     in the General Quadrature formula given by (2) and 

neglecting all differences greater than the sixth we get 

   ∫    
     

  
   

        *                        
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In general  

     ∫    
     

   (     
 

  

  
(                                      

where     (             and n is a multiple of 6. 

Thus  

  ∑          
  

  
∑ (                                    

 
       

 
  

  
[(        (              (              

   (             ] 

Midpoint Rule 

Let us assume that    (   is the function which we want to integrate 

over the interval [         ], where h is the length of subintervals. 

For the Midpoint rule [10], (
       

 
) is used as an approximation for the 

value in the subinterval. Now we get 
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Simpson’s Rule 

Simpson's rule is based on polynomial interpolation and uses second -

degree polynomial [10]. In this rule,   ,      and   are used as three sides 

of the figure, but the fourth side is parabola approximated to the graph of 

the function. Values at the beginning and end of the subinterval are used as 

the points needed to approximate this parabola. Now, the value of the area 

for [       ] is calculated by the following formula 

    (      (   
 

 
)   (           

  
 

 

        

where           and   
     

 
. The whole integral gives the following 

approximated value 

  ∫    
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Composite Numerical Integration Method 

The composite numerical integration method [6] estimates the area under 

the curve of a function f numerically and above the horizontal axis between 

the interval [    ]. It can be obtained by summing the areas of all the n 

partitions each of width   
   

 
 and k sub-divisions. Suppose    

 (                be the ordinate at    of the function f. Also assume 

that the interval [       ] is divided into k equidistant points     
 

 
    

         then the corresponding ordinates of f are given by  
  

 

 

 

 (   
 

 
 )                           Thus the composite 

numerical integration method proposed by Felix et al. (2016) is given by 
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where the subscript in    means that the area estimation is based on n 

segments in the interval [   ]. 

Results and Discussions 

Numerical integration is the process of finding the area under a function 

especially when the integration of the function becomes very difficult or 

impossible to find the integrals. Due to this reason, we use different types 

of integration methods as a substitute for the exact integration method. As 

we want to know which methods give us the approximate result close to the 

exact integration result, we will use several simple functions so that these 

functions can be integrated easily, and then we will compare the results of 

the exact integration method with different types of integration methods to 

determine the most appropriate one for estimating the integrals. Initially, 

we will set up a tolerance limit      for all the integration methods. We 

will record the CPU time taken by each method to get the desired integral 

value and repeat this process 100 times. Average CPU time will be 

obtained by averaging these CPU times. The errors of integral values 

obtained by different integration methods are calculated by the following 

formula 

      (               
                 

     
      

Example 1: As an illustration, we will use the following integral problem 

∫    
   ∫ (∑
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                            (As the value is taken up to 8 decimal places)    

The main objective of this paper is to determine the optimum number of 

partitions n at which the integration methods give us the approximate 

result. So, initially we have chosen the primary value of n for different 
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integration methods. As we can see from Table 1 that initially we have 

taken     for Trapezoidal rule. After successful completion of 5262 

steps (5262 partitions), this method gives the approximate result 

16.4526304 with error 1.59861825×10
-5

(in percentage) and it takes an 

average of 3.5414 CPU time to complete the iteration task. This method 

has taken 5261 additional steps (5261 additional partitions) automatically 

and stopped the procedure of taking additional partitions because the 

difference between the integral values after 5262 partitions and 5261 

partitions is less than the tolerance limit     . If we increase the value of 

the tolerance limit to minimize the error, we will need more steps as well 

as more partitions to get the desired result and vice versa. For example, if 

the tolerance limit is set up as      , then it will need 52342 steps (52342 

partitions) to get 16.45262779 as the integral value with error 

1.6150918×10
-7

.  Here we can see that it will reduce the error but it will 

take more partitions as well as more CPU time. We initially set up     

for Simpson’s 1/3 rule. After 162 steps (          partitions), this 

method gives the approximate result 16.45262781 with error 

2.414301817×10
-7

 so that the difference between the integral values after 

322 partitions and 324 partitions is less than the tolerance limit      . 

Among the methods of integration, we can see that Weddle's rule requires 

21 steps (126 partitions) along with error 2.146778994×10
-8 

which are 

less than any other methods. Also, it takes less CPU time to complete the 

iteration task compared to other methods. For the composite integration 

method initially, we set up       partitions and        sub-

divisions with tolerance limit     , then it takes 502 steps to get the 

approximate result 16.45262777 with less error than any other methods. 

But if we take a small number of partitions      in the initial step with 

      sub-divisions, it takes 86 steps to get the approximate value 

16.45262777 with error 2.508318815×10
-7

. By comparing all three results 

of composite integration, it can be noticed that the error percentages 

increased as the number of subdivisions k decreased and the percentages 

of error don’t depend on the initial number of partitions n.  
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Table 1: Estimates of the area and number of steps for example 1 using different 

integration methods 

Integration method Obtained value Error in percentage 
No. of 

steps 

No. of 

partitions 

Elapse 

computing 

time (second) 

Trapezoidal rule 16.4526304 1.59861825×10-5 5262 5262 ×1 = 5262 3.5414 

Simpson’s 1/3 rule 16.45262781 2.414301817×10-7 162 162 × 2 = 324 0.0241 

Simpson’s 3/8 rule 16.4526278 2.046526199×10-7 138 138 × 3 =414 0.01 

Boole’s rule 16.45262777 3.130561554×10-8 31 31 × 8 = 248 0.0048 

Weddle’s rule 16.45262777 2.146778994×10-8 21 21 × 6 = 126 0.0045 

Midpoint rule 16.45262568 1.26922428×10-5 4176 4176×1 = 4176 0.01 

Simpson’s rule 16.45262781 2.414301385×10-7 162 162×1 = 162 0.0291 

Composite 

Integration method 

16.45262777 

when      , 

       

7.08053955×10-11 502 502 
0.5138 

 

16.45262788 

when      , 

     

7.079480164×10-7 502 502 
0.0417 

 

16.45262781 

when     , 

      

2.508318815×10-7 86 86 
0.18 

 

For the computational purpose, if we initially set      (large n matches 

with all rules), then we can see from Table 2 that all the methods give us 

the approximate result after 2 steps only along with very small error 

except composite integration method. The Composite Integration takes 

10077698 steps to get 16.45262777 with error 9.501181458×10
-13

 and 

also requires an infinite amount of CPU time to finish the task.  Also, all 

other methods require unusual CPU time to complete the task. That's why,  

it will not be wise to set up a very large value of n at the initial step.  
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Table 2: Estimates of the area and number of steps for example 1 using different 

integration methods 

Integration 

method 
Obtained value Error in percentage No. of steps 

No. of 

partitions 

Elapse 

computing 

time (second) 

Trapezoidal rule 16.45262777 4.318718845×10-12 2 2×1 = 2 3.2019 

Simpson’s 1/3 

rule 
16.45262777 4.318718845×10-14 2 2×2 = 4 5.1442 

Simpson’s 3/8 

rule 
16.45262777 4.318718845×10-14 2 2×3 = 6 6.2312 

Boole’s rule 16.45262777 4.318718845×10-14 2 2 × 8 = 16 8.6124 

Weddle’s rule 16.45262777 4.318718845×10-14 2 2 × 6 = 12 6.6452 

Midpoint rule 16.45262777 5.463179339×10-12 2 2 × 1 = 2 0.01 

Simpson’s rule 16.45262777 3.217445539×10-12 2 2 × 1 = 2 47.1293 

Composite 

Integration 

method 

16.45262777 

when     ,  

k = 50 

9.501181458×10-13 10077698 10077698 ∞ 

Example 2: For the comparison purpose, we will consider the following 

integral problem 

∫    (     *
    (  

 
 

  

 
+

 

 
               (as the value is 

taken up to 8 decimal places) 

From Table 3 it can be seen that after completion of 488 partitions, 

Trapezoidal rule gives its best approximate result 0.6362946047 with 

error 3.827614448×10
-5

. This error is comparatively greater than rest of 

the considered methods as the tolerance limit was 10
-9

. The CPU time is 

0.0361. Among all the other considered methods, we can see that the 

Midpoint rule produces the second-highest error 3.030638411×10
-5

 by 

giving the approximate value of 0.6362941683 as the difference between 

the integral values after 32 partitions and 34 partitions is less than the 

tolerance limit 10
-9

. Also, we can see from Table 3 that Weddle’s rule 

gives us the best approximate result 0.6362943613 after the successful 

completion of 24 partitions with fewer errors 3.0263381×10
-8

 compared 

to other methods except for the composite integration method. In the 

composite integration method, it can be seen that when we set up the 

initial partitions      and subdivisions       , then this method 

takes 502 steps and produces less error 1.465653945×10
-12

 which is less 

than all other methods but it will require more CPU time 0.481 second.  
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Table 3: Estimates of the area and number of steps for example 2 using different 

integration methods 

Integration 

method 

Obtained 

value 

Error in 

percentage 

No. of 

steps 

No. of 

partitions 

Elapse 

computing 

time (second) 

Trapezoidal rule 0.6362946047 3.827614448×10
-5

 488 488×1 = 488 0.0361 

Simpson’s 1/3 

rule 
0.6362943651 6.239542542×10

-7
 17 17 × 2 = 34 0.0016 

Simpson’s 3/8 

rule 
0.6362943641 4.73017669×10

-7
 15 15 × 3 = 45 0.0019 

Boole’s rule 0.6362943618 1.070230107×10
-7

 4 4 × 8 = 32 0.0005 

Weddle’s rule 0.6362943613 3.0263381×10
-8

 4 4 × 6 = 24 0.0008 

Midpoint rule 0.6362941683 3.030638411×10
-5

 388 
388 × 1 = 

388 
0.01 

Simpson’s rule 0.6362943651 6.239542542×10
-7

 17 17 × 1 = 17 0.0016 

Composite 

Integration 

method 

0.6362943611 

when   
   ,   
     

1.465653945×10
-

12
 

 

502 
502 × 1 = 

502 
0.481 

0.6362943612 

when     , 

      

1.452471784×10
-8

 

 
52 52 × 1 = 52 0.0088 

Table 4 indicates that when      partitions are set up initially all 

methods give us the approximate result by producing less computational 

error but it takes unusual CPU time on average as in example 1 which is 

presented in Table 2. Simpson’s rule takes the most unusual average CPU 

time 41.4759 second among all other methods. The result of the composite 

integration method is not included in the following tables as it shows poor 

performance for a large value of n. 

Table 4: Estimates of the area and number of steps for example 2 using different 

integration methods 

Integration 

method 
Obtained value Error in percentage 

No. of 

steps 

No. of 

partitions 

Elapse 

computing 

time (second) 

Trapezoidal rule 0.6362943611 8.724130626×10
-14

 2 2 × 1 = 2 2.46 

Simpson’s 1/3 

rule 
0.6362943611 0 

2 
2 × 2 = 4 3.4315 

Simpson’s 3/8 0.6362943611 0 2 2 × 3 = 6 4.1814 
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rule 

Boole’s rule 0.6362943611 0 2 2 × 8 = 16 4.3619 

Weddle’s rule 0.6362943611 0 2 2 × 6 = 12 4.619 

Midpoint rule 0.6362943611 1.090516328×10
-11

 2 2 × 1 = 2 0.01 

Simpson’s rule 0.6362943611 1.095750807×10
-11

 2 2 × 1 = 2 41.4759 

Example 3: The following integral problem will also be considered for our 

illustration purpose  

∫
 

 
  

 

 
 [    ]               

As it is observed from Table 5 that Trapezoidal rule takes the largest number 

of partitions 1369 and produces more computational error compared to other 

methods for obtaining the approximate result. The rest of the interpretations 

of Table 5 are similar as in Table 1 and Table 3.  

Table 5: Estimates of the area and number of steps for example 3 using different 

integration methods 

Integration 

method 

Obtained 

value 

Error in 

percentage 

No. of 

steps 

No. of 

partitions 

Elapse 

computing 

time (second) 

Trapezoidal 

rule 
1.609438596 4.249747827×10

-5
 1369 

1369×1 = 

1369 
0.054 

Simpson’s 1/3 

rule 
1.609437931 1.162952897×10

-6
 74 74 × 2 = 148 0.0044 

Simpson’s 3/8 

rule 
1.609437928 9.929445612×10

-7
 63 63 × 3 = 189 0.0065 

Boole’s rule 1.609437916 2.339011664×10
-7

 20 20 × 8 = 160 0.0024 

Weddle’s rule 1.609437915 1.554849827×10
-7

 14 14 × 6 = 84 0.0012 

Midpoint rule 1.60943737 3.371669721×10
-5

 1087 
1087×1 = 

1087 
0.01 

Simpson’s rule 1.609437931 1.162952925×10
-6

 74 74 × 1 = 74 0.0086 

Composite 

Integration 

method 

1.609437912 

when   
   ,   
     

1.258232319×10
-

11
 

502 502 × 1 = 502 0.1089 

1.609437914 

when     , 

      

1.272493389×10
-7

 52 52 × 1 = 52 0.0038 

Detail descriptions of Table 6 are similar as in Table 2 and Table 4. 
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Table 6: Estimates of the area and number of steps for example 3 using different 

integration methods 

Integration 

method 

Obtained 

value 
Error in percentage 

No. of 

steps 

No. of 

partitions 

Elapse 

computing 

time (second) 

Trapezoidal rule 1.609437912 7.174131644×10
-13

 2 2 × 1 = 2 1.2222 

Simpson’s 1/3 

rule 
1.609437912 6.898203504×10

-14
 

2 
2 × 2 = 4 1.4102 

Simpson’s 3/8 

rule 
1.609437912 8.277844204×10

-14
 

2 
2 × 3 = 6 1.2423 

Boole’s rule 1.609437912 5.518562803×10
-14

 2 2 × 8 = 16 1.341 

Weddle’s rule 1.609437912 6.898203504×10
-14

 2 2 × 6 = 12 1.554 

Midpoint rule 1.609437912 1.96874728×10
-14

 2 2 × 1 = 2 0.01 

Simpson’s rule 1.609437912 1.9287377×10
-14

 2 2 × 1 = 2 56.1543 

Conclusions 

In this paper, we have used several numerical integration methods in such a 

way that one can get the approximate integral values through an extensive 

test for various numerical functions. We have considered eight different 

numerical integration methods such as Trapezoidal rule, Simpson’s 1/3 rule, 

Simpson’s 3/8 rule, Boole’s rule, Weddle’s rule, Midpoint rule, Simpson’s 

rule and Composite integration method for our comparison purpose. We 

have set up initial partitions and a tolerance limit for all the considered 

methods. After that these methods automatically have continued to take 

additional partitions for obtaining the best approximate integral value until 

the difference between two successive values of each method is less than 

the tolerance limit. For comparison purposes, we have also set up initial 

partitions     and noticed that these methods give the approximate 

result only in two steps but it takes unusual CPU time on average to 

complete the iteration procedure. That’s why initially it will not be wise to 

set up large partition values. It has been noticed that Weddle’s rule gives us 

comparatively better results compared to other methods because it takes a 

small number of optimum steps and partitions to get the approximate result, 

and also produces a less computational error and takes less average CPU 

time to complete the task. The second method which performed 

comparatively well is Boole’s rule as it takes a fewer number of steps as 

well as produces a less computational error. Composite integration method 
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has also produced less computational error but it only works for a large 

number of subdivisions, and also what should be the exact number of 

subdivisions is not fixed beforehand. So, the composite integration method 

performed well except that limitation. After that, the chronologies of the 

methods which performed well are Simpson’s 3/8 rule, Simpson’s rule, 

Simpson’s 1/3 rule, Midpoint rule and Trapezoidal rule.  

References 

[1] A. Kaw and M. Keteltas, Lagrange interpolation (2009). 

http://numericalmethods.eng.usf.edu. 

[2] R. L. Burden and J.D Fairs, Numerical analysis. 7th ed. Brooks/Cole 

Thomson, Pacific Grove, CA ,2001. 

[3] R. P. Canale and S. C. Chapra, Numerical methods for engineers: With 

software and programming applications. McGraw-Hill, New York. 2002. 

[4] D. C. M. Dickson, M. R. Hardy and H. R. Waters, Actuarial mathematics for 

life contingent risks. 2nd ed. Cambridge University Press, New York. 2013. 

[5] S.A. Klugman, H.H. Panjer and G.E. Willmot, Loss models: From data to 

decisions. 2nd ed. John Wiley &Sons, Inc. Publication ,2004. 

[6] F.O. Mettle, E. N. B. Quaye, L. Asiedu and K. A. Darkwah, A Proposed 

Method for Numerical Integration. British Journal of Mathematics & 

Computer Science, 2016, 17(1), 1-15. 

[7] G. C. White, E. G. Cooch, Population abundance estimation with 

heterogeneous encounter probabilities using numerical integration. The Journal 

of Wildlife Management, 2017, 81(2), 322–336. 

[8] W. Wei, B. Zhou, D. Połap and M. Wozniak, A regional adaptive 

variational pde model for computed tomography image reconstruction. 

Pattern Recognition, 2019, vol. 92, pp. 64–81. 

[9] M. Liang and T. E. Simos, A new four stages symmetric two-step method 

with vanished phase-lag and its first derivative for the numerical integration 

of the schrödinger equation. Journal of Mathematical Chemistry, 2016, 

54(5), 1187–1211. 

[10] A. Winnicka. Comparison of Numerical Integration Methods. Institute of 

Mathematics. Silesian University of Technology, Poland. 



78 Rahman et. al. 

[11] E. Novak, Some results on the complexity of numerical integration, in 

Monte Carlo and Quasi-Monte Carlo Methods. Springer, 2016, 161–183. 

[12] A. P. Nagy and D. J. Benson, On the numerical integration of trimmed 

isogeometric elements. Computer Methods in Applied Mechanics and 

Engineering, 2015, 284, 165–185. 

[13] V. Keshavarzzadeh, R. M. Kirby and A. Narayan, Numerical integration in 

multiple dimensions with designed quadrature. SIAM Journal on Scientific 

Computing, 2018, 40(4), A2033–A2061. 

[14] B.K. Dutta, N. Rahman, R.C. Bhowmik, S.Paul, M.R. Kabir and U. Roy, A 

Numerical Simulator for Solving Numerical Integration. International 

Journal of Scientific Engineering and Technology, 2014, 3(4), 342-345. 

 


