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Abstract 

For conducting correlational analysis, one may be faced with statistical problem 

if the dataset contains outliers and other contaminations. In order to use any 

correlation method when the dataset contains outliers, one must know the 

stability of that correlation method. For this reason, it is essential to check the 

stability of the considered classical correlations and robust correlations so that 

we can use those correlations without any doubt in our mind. In this paper, 

several contamination cases have been introduced for checking the stability of 

the classical and robust correlations that are considered. The performances of 

robust correlations and classical correlations are compared and also 

performances of robust correlations among each other are compared through a 

simulation study and real data examples both for study clean data and 

contaminated data. Based on simulation study and real data applications, robust 

correlations have much better performance compared to classical correlations 

from clean to contaminated data. Among the robust correlations adjusted 

bivariate winsorized correlation has more stability than any other robust 

correlations. When some observations in real dataset are replaced by outliers, 

classical correlation i.e. Pearson correlation is changed drastically and robust 

correlations remain almost same. 

Keywords: Pearson correlation, Point biserial correlation, Spearman‟s rank 

correlation, Kendall‟s tau, Maronna‟s correlation, univariate winsorized, 

bivariate winsorized, adjusted bivariate winsorized, quadrant correlation.  

Introduction 

In data analysis, the association between two variables is often of interest. 

Correlation analysis is one of the most widely studied techniques in 

probability and statistics to measure the association. To study the presence 

or absence of association between variables of interest, we need to use 

appropriate techniques. A large variety of techniques have been applied in 

the literature to assess the correlation. Among these techniques, Pearson 

and point biserial correlations are known as classical correlations and 

Spearman‟s rank, Kendall‟s Tau, Maronna‟s correlation, univariate 
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winsorized, bivariate winsorized, adjusted bivariate winsorized and 

quadrant correlations are known as robust correlations.  

Among the classical correlations, Pearson correlation is the most popular 

measure of association and easy for calculation. A recent publication [1] 

illustrates that Pearson‟s correlation coefficient can often offer an effective 

description of linear association. Another classical correlation i.e. point 

biserial correlation is based directly on the Pearson correlation coefficient 

which also shows linear relationship between two variables. However, 

sometimes classical correlations might not be applicable when the 

relationship is not linear. Another problem is the presence of outliers and 

other contaminations in the datasets. Classical correlations are also affected 

by these outliers, and they could fail to provide reliable estimates. Under 

this circumstance, robust correlations are suitable to use as they are not 

much affected by outliers. Therefore, the main focus of our work is to 

analyze the amount of changes of classical correlations and robust 

correlations when outliers and other contaminations are present in the 

datasets. Puth et al. [1] examined the performance of the two rank order 

correlations (Spearman and Kendall‟s tau) for describing the strength of 

association between two continuous variables and found that both rank 

coefficients provide only slightly better performance than Pearson. In Ma, 

Xu, Wang and Chen [2] likewise reported that Spearman and Kendall‟s tau 

have more advantage over Pearson when one variable is clean and the other 

corrupted by a tiny fraction of impulsive noise. Abdullah [3] checked the 

stability of only three correlations i.e. Pearson‟s, Spearman‟s and Kendall‟s 

tau against a substantial number of outliers. In this study, the stability of 

several classical and robust correlations has been checked by giving several 

percentage of outliers through a simulation study. In continuation to the 

study, present study is also undertaken to compare robust correlations with 

each other in presence of outliers.  

The remainder of this paper is structured as follows. In section 2, we 

review classical correlations. In section 3, we review robust correlations 

and provide numerical complexity of different correlations. In section 4, 

we describe a simulation study for comparing the performance of our 

robust correlations with each other and with the classical ones. In section 5, 

percentage variation is presented to compare classical and robust 
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correlations in more detail. In section 6, we compare time complexity of all 

correlations. In section 7, we describe a real data application, and finally 

we conclude this article by summarizing main findings in this work in 

section 8. 

2. Classical correlations 

2.1 Pearson correlation 

Pearson correlation [4] is the most popular measure of correlation for 

measuring the degree or strength of linear relationship between two 

numerically valued random variables. Suppose X and Y  be two variables 

with n  pairs of observations represented by .3, 2, , 1  ; ),( ....niyx
ii

 . Then 

the Pearson correlation is defined as 
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1
y = mean value on the continuous variable Y for all data points in group 1 

y0
= mean value on the continuous variable Y for all data points in group 2 

p = proportion of group 1 form of the total 

pq  1  

3. Robust correlations 

3.1 Spearman’s rank correlation  

Spearman‟s rank correlation coefficient [8] is a popular nonparametric rank 

correlation which equals the Pearson correlation computed from the ranks 

of observations. The Spearman‟s rank correlation, denoted by   , is defined 

as , 
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where i
d  is the difference in ranks of the i

th
 element of each random 

variable considered.  

3.2 Kendall’s Tau 
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3.3 Maronna’s correlation 

Most available robust correlation estimators which are computed from d -

dimensional data are very time consuming [10]. Robust pairwise 

approaches [11] are sensitive to two-dimensional outliers. Khan et al. [12] 

considered a simplified version of the bivariate M-estimate. To obtain 

robustness against two-dimensional structural outliers a bivariate M–

estimator is used which is proposed by Maronna [13] as it is 

computationally efficient.  

Maronna’s M-estimate of the location vector t  and positive definite 

symmetric scatter matrix V is defined as the solution of the system of 

equations: 
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, and 

1
u  and 

2
u satisfy a set of general 

assumptions. 

3.4 Univariate Winsorized correlation 

The idea of univariate winsorization of the data is introduced by Huber [11] 

and suggested that classical correlation coefficients can be calculated from 
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these winsorized data. This approach was re–examined by Alqallaf et al. 

[14] for the estimation of individual elements of a large–dimension 

correlation matrix. The transformation

      nixmadxmedxu
iiici

 , ... ,2,1 , 
 
is obtained for n  univariate 
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 ,,maxmin   is called 

Huber score function with a tuning constant c . This tuning constant is 

chosen by the user, e.g. 2c or 5.2c . Though the univariate 

winsorization approach can be computed very rapidly, it does not take into 

account the orientation of the bivariate data. 

3.5 Bivariate Winsorized correlation  

Khan et al. [15] proposed a bivariate winsorization to reduce this problem 

based on an initial robust bivariate correlation matrix
0

R , and a 

corresponding tolerance ellipse. Outliers are shrunken to the border of this 

ellipse by using the bivariate transformation    xxDcu  1 ,min , with

 t
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 ,  . In this transformation  xD  is the Mahalanobis distance 

based on 0
R where   xVxxD

t
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 . Here c  is a tuning constant that was 

chosen to be 99.5c , the 95% quantile of the
2

2
  distribution. Then the 

classical correlation coefficient of u is said as the robustified correlation of

 t
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3.6 Adjusted Bivariate Winsorized correlation 

An appropriate initial correlation matrix 0
R  is an essential part for 

bivariate winsorization. Khan et al. [15] proposed an adjusted 

winsorization method that is more resistant to bivariate outliers. This 

method considers quadrants relative to the coordinate-wise medians (which 

are 0 due to the robust standardization of the data) and uses two tuning 
1

c  

and 
2

c  for performing univariate winsorization of the data. 
1

c  is used to 

winsorize the points lying in the two diagonally opposed quadrants that 

contain most of the standardized data (called the “major quadrants”). 
2

c  is 

used to winsorize the remaining data in the other two quadrants. The initial 

correlation matrix 0
R  is obtained by computing the classical correlation 
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matrix of the adjusted winsorized data. Bivariate outliers are handled much 

better by adjusted winsorization than univariate winsorization. The outliers 

are shrunken to the boundary of the larger ellipsoid by using bivariate 

winsorization and thus appropriately down-weighted so that a robust 

correlation is obtained. Although the initial adjusted winsorization and the 

resulting bivariate winsorization are not affine-equivariant, they can be 

computed very rapidly and can appropriately handle bivariate outliers. 

3.7 Quadrant correlation 

The quadrant correlation coefficient, 
Q

r [16] is computed by first centering 

the data by the co-ordinate wise median, then Q
r  equals the frequency of 

observations in the fourth quadrant 

       
n

i
jjijjiQ

ymedianyxmedianxsign
n

r  
1

 

Here, the sign  function equals 1 for positive arguments and -1 for negative 

arguments, and   00 sign . 

Numerical complexity of different correlations 

Univariate winsorized correlation and adjusted bivariate winsorized 

correlation both can be computed in  nn  log  time. Also, the bivariate 

winsorized correlation and Maronna‟s correlation require  nn  log  time 

but Maronna‟s correlation has a larger multiplication factor depending on 

the number of iterations required. It should be noted here that Spearman‟s 

rank correlation can be computed in  nn  log  time which is the same as 

adjusted bivariate winsorized correlation. Though Kendall‟s tau separately 

examines each of the 









2

n (order 2
n ) pairs of bivariate observations, there is 

an algorithm that can calculate Kendall‟s tau in  nn  log   time [17].  

4. A Simulation Study 

 A simulation study is carried out for comparing the performances of 

classical correlations and robust correlations with each other. More 

specifically, this study is also carried out in order to compare the 
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performance of robust correlations with classical correlations. To perform 

the simulation study true Pearson correlations of 0.50, 0.80, 0.90, -0.50, -

0.80, -0.90 are considered. For different true Pearson correlation values 

10000 datasets each of size 500 from a bivariate standard normal 

distribution of ),( YX are generated as clean data. Then the datasets are 

contaminated by 5%, 10% and 15% outliers. The datasets are contaminated 

with mean 50 and standard deviation 1 (for X variable) and with mean 100 

and standard deviation 1 (for Y  variable). For point biserial correlation, 

the datasets are contaminated only for continuous variable (i.e. X variable). 

Here, only for point biserial correlation Y variable is considered as 

dichotomous variable. 

For each simulated data set 5% trimmed mean, median absolute deviation 

(mad) and standard deviation (SD) of the coefficients are recorded. The 

median absolute deviation (mad) and standard deviation (SD) are shown in 

the parentheses.  

At first the performances of the classical correlations from clean data to 

contaminated data for different positive true Pearson correlation values are 

presented in Table 1 (see Appendix). In all the cases, the mean value of 

Pearson and point biserial correlation is clearly changing with the 

percentage of outliers increasing, i.e. for true Pearson correlation value 

0.90 the mean value of Pearson correlation changes from 0.8998 to 0.9983 

(for outliers 5%) and 0.9992(for outliers 15%). Also mean value of point 

biserial correlation changes from 0.7177 to 0.0633 (for outliers 5%) and 

0.0339 (for 15% outliers). It is clear that Pearson correlation and point 

biserial correlation are immediately affected by outliers and their mean 

values move away from the values of clean data as the percentage of 

outliers increases while point biserial correlation changes very rapidly. 

These results are confirming that the point biserial correlation performs 

less well than Pearson correlation for contaminated data. In all other true 

Pearson correlation cases, the conclusions of the simulation results are 

similar as Table 1. So the results of other true Pearson correlation cases are 

not included.  

In Table 2 (see Appendix) the performance of robust correlations for 

different percentage of outliers from clean to contaminated data are 

presented when true Pearson correlation is 0.90. It shows that Spearman‟s, 
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Kendall‟s tau are much less affected by outliers and Quadrant correlation 

are slightly more stable than Spearman‟s correlation and Kendall‟s tau. For 

5% outliers, mean values of Spearman, Kendall‟s tau and Quadrant 

correlations changes from 0.8904 to 0.9059, 0.7128 to 0.7384, 0.7119 to 

0.7269. It is also observed that the more we increase the percentage of 

outliers, the performance of Spearman and Kendall‟s tau is quite poor than 

Quadrant correlation. Maronna‟s correlation and univariate winsorized 

correlation remain within bounds for 5% of contamination i.e. mean values 

of these two correlations changes from 0.8993 to 0.8859 and 0.8973 to 

0.9187. It is also seen that univariate winsorized correlation being more 

resistant to outliers among these two correlations when percentage of 

outliers is increased (mean values of Maronna‟s correlation and univariate 

winsorized correlation changes from 0.8993 to 0.9993 and 0.8973 to 

0.9525 for 15% outliers). During the 10% contamination of the data, the 

mean values of bivariate winsorized and adjusted bivariate winsorized 

changes from 0.9009 to 0.8970 and from 0.8997 to 0.8943. From Table 2 it 

is clear that bivariate winsorized and adjusted bivariate winsorized 

correlation show the better results in the presence of outliers, while 

adjusted bivariate winsorized correlation gives more stable and reliable 

results than all other correlations and it seems to be best of all of the ones 

we considered. In all other true Pearson correlation cases, the conclusions 

of the simulation results are similar as Table 2. Hence the results of other 

true Pearson correlation cases are not included. 

The performances of the classical correlations and robust correlations from 

clean to contaminated data are presented in Table 3 (see Appendix) when 

true Pearson correlation is 0.90. It reports that classical correlations 

changes rapidly with only 5% of outliers while almost all the robust 

correlations remain stable i.e. classical correlation i.e. Pearson correlation 

changes from 0.8998 to 0.9983 while robust correlations i.e. adjusted 

bivariate winsorized correlation changes from 0.8997 to 0.8946. At the 

same time, more we increase the percentage of outliers in the data, more 

the robust correlations perform well while the performance of classical 

correlations is quite poor. This confirms the non-robustness of the classical 

correlations and thus we say that robust correlations tend to be quite stable 

even with 15% of outliers. When we increase outliers from 5% to 15%, the 

mean value of classical correlation such as Pearson correlation changes 
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from 0.9983 to 0.9992 when mean value of this correlation without outliers 

is 0.8998. On the other hand, average value of robust correlation i.e. 

adjusted bivariate winsorized correlation changes from 0.8946 to 0.8971 

when mean value of this correlation without outliers is 0.8997. Thus, we 

clearly observe that the robust correlations are more stable than classical 

correlations. In all other true Pearson correlation cases, the conclusions of 

the simulation results are similar as Table 3. Hence the results of other true 

Pearson correlation cases are not included.  

5. Percentage variation 

The percentage variation from clean to contaminated data for true Pearson 

correlation value 0.90 is presented in Table 4 (see Appendix). From the 

table, it is clear that the performance of Pearson correlation and point 

biserial correlation are deteriorating with the percentage of outliers 

increasing. While quadrant correlation, Spearman‟s rank correlation and 

Kendall‟s tau seem to be slightly affected by outliers. A smaller effect is 

detected for Maronna and univariate winsorized correlation while 

Maronna‟s correlation shows behaviour similar to the Pearson correlation 

for larger amount of outliers. On the other hand, bivariate and adjusted 

bivariate winsorized correlations are not at all influenced by outliers. 

Adjusted bivariate winsorized correlation is quite stable even in large 

proportion of contamination. It is clear, however that classical correlations 

perform poorly than robust correlations when data is contaminated with 

outliers. For all other true Pearson correlation value, we find the same 

results as Table 4. Hence the results of other true Pearson correlation are 

not included. 

6. Numerical complexity of different correlations  

Now, we compare the computation times of different correlations. Figure 1 

shows the mean cpu times in seconds (based on 100 replicates) for 5 

different sample sizes: 10000, 20000, 30000, 40000 and 50000. This plot 

demonstrates that Pearson correlation, point biserial correlation and 

quadrant correlation can be computed faster than univariate winsorized 

correlation. The results in figure 1 also confirms that calculating the 

adjusted bivariate winsorized correlation requires slightly more time than 

univariate winsorized correlation. We also see that bivariate winsorized 
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correlation can be computed faster than Spearman‟s rank correlation and 

Maronna‟s correlation and that the time difference increases with sample 

size. Here, Maronna‟s correlation is clearly more time consuming. 

Moreover, Kendall‟s tau does not appear in the figure as it has huge 

computational burden.  

 

Figure 1: Average computation times for different correlations. 

7. Real Data Applications 

In this section, a real dataset is used to demonstrate the stability of classical 

and robust correlations. 

Diamonds dataset 

This dataset is collected from kaggle.com which was updated by 

Shivamagrawal (2017). The dataset contains 53940 observations with 10 

variables. Here, we only considered two continuous variables. For this 

reason, we omitted 8 variables from the dataset. Here, the variables which 

are taken for analysis are carat weight of the diamonds and price of the 

diamonds.  

In this paper our concern is to check the stability of correlations, so there is 

no dependency and independency relationship between these two variables. 
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Here, we consider the variable price as X and carat weight asY . Classical 

and robust correlations are applied to this dataset and Table 5 represents 

the resulting values of all correlations. 

Now, the data set are contaminated by replacing one small value of 

variable X (say 230
th

 value 2783) by a large value 278300 and the 

corresponding value of Y variable (0.52) by a large value 5200. When 

classical correlations i.e. Pearson and point biserial correlation are applied 

to the contaminated data, they are immediately affected by outliers. On the 

other hand, almost all the robust correlations remain stable. For example, 

values of Pearson correlation changes from 0.9215913 to 0.3025743 after 

replacing one small value by a large value while robust correlation i.e. 

univariate winsorized correlation changes from 0.9475939 to 0.9475971. 

Thus, we clearly observe that the robust correlations are more stable than 

classical correlations. Among the robust correlations, bivariate winsorized 

correlation and adjusted bivariate winsorized correlation are more stable as 

values of both correlation changes from 1 to 0.9999999 where 0.9999999 is 

almost 1. However, adjusted bivariate winsorized correlation and bivariate 

winsorized correlation outperform in almost all of the robust correlations. 

These results are shown in Table 5. 

Table 5: Results for diamonds dataset 

Correlation 
Data 

Clean Contaminated 

Classical 

 

Pearson Correlation 0.9215913 0.3025743 

Point biserial correlation 0.7697655 0.7396463 

 

 

Robust 

Spearman‟s rank correlation 0.9628828 0.9628867 

Kendall‟s tau 0.8341049 0.8341168 

Maronna‟s correlation 0.9209345 0.9209242 

Univariate Winsorized 0.9475939 0.9475971 

Bivariate Winsorized 1 0.9999999 

Adjusted Bivariate Winsorized 1 0.9999999 

Quadrant correlation 0.889266 0.8893029 

8. Conclusion 

In this study, the stability of several classical correlations and robust 

correlations are examined in the presence of outliers or other contamination 
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in the datasets. For this reason a comparison is made among classical 

correlations and robust correlations using simulated datasets and real 

datasets. In simulated datasets, we compared the performance of robust 

correlations and classical correlations by contaminating the simulated 

datasets. To get the performances of classical and robust correlations in 

more details percentage variations are compared. Robust correlations have 

performed much better than classical correlations. As we increased the 

percentage of outliers in the simulated datasets, the robust correlations have 

performed much better than the classical correlations. Among the robust 

correlations we observed that adjusted bivariate winsorized correlation 

yielded the most efficient correlation in almost all the contamination cases. 

We also compared the computation times of classical correlations and 

robust correlations. Though classical correlations required less time for 

computation but these correlations were unstable and could not give 

reliable results. On the other hand, robust correlations required slightly 

more time for computation than classical correlations but they were much 

more stable than classical correlations. In real datasets, when we replaced 

some observations by outliers, classical correlations change clearly and 

give poor results. On the other hand, robust correlations remain stable and 

give reliable results. From the simulation study and real dataset, it can be 

summarized that robust correlations are the best performer than classical 

correlations i.e. robust correlations remained more stable than classical 

correlations in the contaminated data. 

Limitations and Further study 

We have seen that the performance of robust correlations is better than 

classical correlations both in simulation study and real data applications. 

But, sometimes robust correlations are not sufficiently robust when the 

percentage of outliers increases in the dataset. In the simulation study, we 

observed that robust correlations show a behavior similar to the classical 

correlations for larger amount of outliers. Another drawback of the robust 

correlations is that most of the robust correlations are time consuming. In 

this case, we need such robust correlations that have good performance and 

less numerical complexity at the same time. For this reason, we should try 

to reduce numerical complexity of the robust correlations.  
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Appendix 

Table 1: Performance of the classical correlations from clean data to 

contaminated data for different Positive true Pearson Correlation 

True Pearson 

correlation values 
Correlation 

Data 

Clean 
Contaminated (outliers) 

5% 10% 15% 

0.50 

Pearson 

0.4991 0.9967 0.9982 0.9987 

(0.0337) (0.0006) (0.0002) (0.0001) 

(0.0336) (0.0007) (0.0002) (0.0001) 

Point 

biserial 

0.3982 0.0353 0.0234 0.0183 

(0.0358) (0.0455) (0.0439) (0.0444) 

(0.0356) (0.0445) (0.0443) (0.0445) 

0.80 

Pearson 

0.7996 

(0.0160) 

(0.0161) 

0.9979 

(0.0004) 

(0.0004) 

0.9988 

(0.0001) 

(0.0002) 

0.9991 

(0.0001) 

(0.0001) 

Point 

biserial 

0.6377 

(0.0217) 

(0.0217) 

0.0565 

(0.0456) 

(0.0448) 

0.0384 

(0.0447) 

(0.0444) 

0.0303 

(0.0436) 

(0.0445) 

0.90 

Pearson 

0.8998 

(0.0084) 

(0.0085) 

0.9983 

(0.0003) 

(0.0003) 

0.9990 

(0.0001) 

(0.0001) 

0.9992 

(0.0001) 

(0.0001) 

Point biserial 

0.7177 

(0.0160) 

(0.0159) 

0.0633 

(0.0457) 

(0.0451) 

0.0431 

(0.0448) 

(0.0445) 

0.0339 

(0.0443) 

(0.0446) 
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Table 2: Performance of the robust correlations from clean data to contaminated 

data when Pearson correlation is 0.90 

Correlation 

Data 

Clean 
Contaminated (outliers) 

5% 10% 15% 

Spearman‟s 

0.8904 

(0.0103) 

(0.0105) 

0.9059 

(0.0097) 

(0.0097) 

0.9190 

(0.0087) 

(0.0087) 

0.9292 

(0.0076) 

(0.0075) 

Kendall‟s tau 

0.7128 

(0.0132) 

(0.0135) 

0.7384 

(0.0134) 

(0.0133) 

0.7575 

(0.0124) 

(0.0124) 

0.7702 

(0.0112) 

(0.0112) 

Maronna‟s correlation 

0.8993 

(0.0086) 

(0.0086) 

0.8859 

(0.0074) 

(0.0075) 

0.9406 

(0.0497) 

(0.0397) 

0.9993 

(0.0001) 

(0.0027) 

Univariate Winsorized 

0.8973 

(0.0087) 

(0.0089) 

0.9187 

(0.0083) 

(0.0083) 

0.9369 

(0.0074) 

(0.0074) 

0.9525 

(0.0064) 

(0.0065) 

Bivariate Winsorized 

0.9009 

(0.0085) 

(0.0087) 

0.8967 

(0.0088) 

(0.0088) 

0.8970 

(0.0088) 

(0.0089) 

0.9003 

(0.0089) 

(0.0091) 

Adjusted Bivariate 

Winsorized 

0.8997 

(0.0085) 

(0.0087) 

0.8946 

(0.0088) 

(0.0088) 

0.8943 

(0.0088) 

(0.0089) 

0.8971 

(0.0090) 

(0.0091) 

Quadrant 

0.7119 

(0.0356) 

(0.0314) 

0.7269 

(0.0356) 

(0.0308) 

0.7432 

(0.0356) 

(0.0298) 

0.7613 

(0.0237) 

(0.0289) 

Table 3: Performance of the classical correlations and robust correlations from 

clean data to contaminated data when true Pearson correlation is 0.90 

Correlation 

Data 

Clean 
Contaminated (outliers) 

5% 10% 15% 

Classical 

 

Pearson 

0.8998 

(0.0084) 

(0.0085) 

0.9983 

(0.0003) 

(0.0003) 

0.9990 

(0.0001) 

(0.0001) 

0.9992 

(0.0001) 

(0.0001) 

Point biserial 

0.7177 

(0.0160) 

(0.0159) 

0.0633 

(0.0457) 

(0.0451) 

0.0431 

(0.0448) 

(0.0445) 

0.0339 

(0.0443) 

(0.0446) 



Classical and Robust Correlation Estimates: A Comparative Study 61 

Robust 

Spearman‟s 

0.8904 

(0.0103) 

(0.0105) 

0.9059 

(0.0097) 

(0.0097) 

0.9190 

(0.0087) 

(0.0087) 

0.9292 

(0.0076) 

(0.0075) 

Kendall‟s tau 

0.7128 

(0.0132) 

(0.0135) 

0.7384 

(0.0134) 

(0.0133) 

0.7575 

(0.0124) 

(0.0124) 

0.7702 

(0.0112) 

(0.0112) 

Maronna‟s 

correlation 

0.8993 

(0.0086) 

(0.0086) 

0.8859 

(0.0074) 

(0.0075) 

0.9406 

(0.0497) 

(0.0397) 

0.9993 

(0.0001) 

(0.0027) 

Univariate 

Winsorized 

0.8973 

(0.0087) 

(0.0089) 

0.9187 

(0.0083) 

(0.0083) 

0.9369 

(0.0074) 

(0.0074) 

0.9525 

(0.0064) 

(0.0065) 

Bivariate 

Winsorized 

0.9009 

(0.0085) 

(0.0087) 

0.8967 

(0.0088) 

(0.0088) 

0.8970 

(0.0088) 

(0.0089) 

0.9003 

(0.0089) 

(0.0091) 

Adjusted 

Bivariate 

Winsorized 

0.8997 

(0.0085) 

(0.0087) 

0.8946 

(0.0088) 

(0.0088) 

0.8943 

(0.0088) 

(0.0089) 

0.8971 

(0.0090) 

(0.0091) 

Quadrant 

0.7119 

(0.0356) 

(0.0314) 

0.7269 

(0.0356) 

(0.0308) 

0.7432 

(0.0356) 

(0.0298) 

0.7613 

(0.0237) 

(0.0289) 

Table 4: Percentage change of correlation from clean to different outliers for true 

Pearson correlation 0.90 

Correlation 5% 10% 15% 

Classical 

 

Pearson correlation 10.95 11.02 11.04 

Point biserial correlation 91.18 93.99 95.28 

 

 

 

Robust 

 

Spearman‟s rank correlation 1.74 3.21 4.36 

Kendall‟s tau 3.59 6.27 8.05 

Maronna‟s correlation 1.49 4.59 11.12 

Univariate Winsorized 2.38 4.41 6.15 

Bivariate Winsorized 0.47   0.43 0.07 

Adjusted Bivariate Winsorized 

correlation 

0.57 0.60 0.29 

Quadrant correlation 2.11 4.40 6.94 

 

  


