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Abstract 

In this paper, we present a Bayesian approach to find the estimators of 

fecundability parameter for heterogeneous cohort of women population using 

non-linear exponential (NLINEX) and linear-exponential (LINEX) loss 

functions, both are asymmetric. The asymmetry brings about the shift of 

location of the loss function. A study of the derived estimators are also done.  
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Introduction 

The two factors such as fertility rate and growth rate are important of the 

size and decomposition of a population. These are governed and related by 

the terms fecundity and fecundability. Fecundity means the potential or 

physiological capacity of women to produce a live birth where as 

fecundability is the probability of conception during a given menstrual 

cycle of those women who did not use any family planning method before 

their first conception and are sexually active. 

Fecundability has an opposite relationship to the conception interval, 

conception delay. Conception interval and fecundability are two important 

and inter related fertility parameters, regarded as the most direct measures 

of fertility of a population. Thus the concept of fecundability is one of the 

principal determining factor of fertility and to human reproductive behavior 

in different societies.  

In homogeneous women population where fecundability is assumed to be 

constant, the most commonly and widely applicable technique is to 

estimate the fecundability directly from geometric distribution. But in real 

life, it has seen that due to effect of many socio-economic and demographic 

variables, fecundability varies from women to women and hence it may be 
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thought of as a random variable. In this situation, beta distribution of first 

kind is considered as an useful model for such a heterogeneous cohort of 

women population. 

Suppose X  be the random month of waiting to conception, then it has the 

conditional geometric distribution with probability mass function (p.m.f) is 

given by 
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where fecundability parameter   assumed to be constant in homogeneous 

women population.  

Now, if   varies among couples, then it has following probability density 

function (p.d.f ) as; 
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where p and q  are shape parameters.  

As such the fecundability of a particular women which is assumed to be 

constant earlier from month to month may be thought of as a realization of 

the random variable  . However, the estimation of fecundability in 

homogeneous model was studied by different authors such as Bongaarts [5], 

Bendel and Hua [6], Islam and Yadava [8], Goldman et. al. [10], 

Balakrishnan [12] and James [13] etc. Some Bayesian analysis of 

fecundability was done by Chowdhury and Umbach [9]. Estimation of 

fecundability parameter in Bayesian approach under different loss 

functions was also studied by Podder [3].  

Now, the purpose of the paper is to find the estimators of fecundability 

parameter   for heterogeneous cohort of women population in a Bayesian 

approach using non-linear exponential (NLINEX) and linear-exponential 

(LINEX) asymmetric loss functions considering the conditional geometric 

distribution in (1) as a fecundability model distribution and beta 

distribution of first kind in (2) as a prior density for  .  

The Bayes’ estimators considered so far are more or less based on 

symmetric loss functions. But it has seen that in some decision problems, 
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the use of symmetric loss functions might be inappropriate because of the 

same magnitude of error, a given positive error might be more serious than 

a given negative error or vice-versa. For instance, in dam construction, an 

underestimate of the peak water level in usually much more serious than an 

overestimate. Therefore, for those cases using an asymmetric loss function 

is more desirable.  

This paper also provides a study among the Bayes’ estimators of   under 

non-linear exponential (NLINEX), linear-exponential (LINEX) and 

squared-error (SE) loss functions as well as maximum likelihood estimator 

(MLE) in Section 4. 

2. Preliminaries  

Let X  be a random variable whose distribution depends on parameter   

and let   denotes the parameter space of possible values of  . Now 

consider the general problem of estimating the unknown parameter  , 

from the results of a random sample of n  observations. Denoting the 

sample observations 
n

xxx ,,
,21
  by x , let ̂  be an estimator of   and also 

let   ,ˆL  be the loss incurred by taking the value of the parameter   to be 

̂ . 

If  xl |  is the likelihood function of   given the sample x  and  g  be 

the prior density of  , then combining  xl |  and  g , it produces the 

posterior distribution  xP |  though the Bayes’ theorem as  

 
   

 xp

gxl
xP




|
|   , (3) 

where      


  dgxlxp | . 

Hence, the Bayes’ estimator ̂  of   will be a solution of the equation 

  0| 


xP
L





, (4) 
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where L  stands for loss function and assume that the sufficient regularities 

conditions prevail to permit differentiation under the sign of integral. 

Here, we consider the following loss functions as; 

 (i)         0,0;1ˆˆ,ˆ
2ˆ
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ˆ
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 (iii)    2
3

ˆ,ˆ  L ; (7) 

where 0  and 0c  are scale and shape characteristics respectively. 

The above loss function   ,ˆ
1

L  is called non-linear exponential (NLINEX) 

proposed by Islam et. al. [2] and the linear-exponential (LINEX) loss 

function   ,ˆ
2

L  introduced by Varian [7] and studied by several authors, 

such as Zellner [1], Christoffersen and Diebold [11] etc. For 0c , it 

penalizes an error almost exponentially, for a positive error and almost 

linearly for a negative error or vice-versa for 0c . The squared-error (SE) 

loss function   ,ˆ
3

L  is a symmetric one. 

Using (5) in (4), we have 

    



 0|1ˆ2

ˆ
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
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where    ˆ2Et .  

Taking logarithm on both sides, it becomes 

   txeEc
c




1ln|lnˆ 

 . 

Now, assume that since Bayes’ estimator is consistent, hence  

  2,0ˆlim 


rE
r

n
 . 
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Expanding  t1ln  on the basis of the assumption and neglecting 2nd and 

higher power of t , where    ˆ2Et , we have 

 
    xExeE

c

c
|2|ln

2

1ˆ  



 



 . 

Therefore, the Bayes’ estimator of fecundability parameter   under the 

NLINEX loss function in (5) is 

 
    xExeE

c

c

NL
|2|ln

2

1ˆ  



 



 . (8) 

Similarly, the Bayes’ estimator of   under the LINEX and SE loss 

functions in (6) and (7) are as follows; 

 xeE
c

c

BL
|ln

1ˆ 

 
  (9) 

and  xE
SE

|ˆ   ,  (10) 

the mean of the posterior distribution and E  stands for the posterior 

expectation. 

3. Bayes’ Estimation 

In this section, the Bayes’ estimators of fecundability parameter   under 

NLINEX and LINEX loss functions are discussed in details. 

Let us consider a random sample  
n

xxxx ,,,
21


 
of size n  drawn from 

(1). The likelihood function of   for the given sample observation x  is 

    



n

i

i nxn
xl 11|   

=   nyn 
 1 , (11) 

where 



n

i

i
xy

1

. 
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The maximum likelihood estimator (MLE) of   is 
x

1
, as sample mean x . 

It is noted that the part of the likelihood function which is relevant to a 

Bayesian inference on the unknown parameter   is   nyn 
 1 . 

For the problem under consideration let us assume that the conjugate prior 

density for fecundability parameter   as  

 
 

  0,0,10;1
,

1 11



qp

qpB
g

qp  , (12) 

where p and q  may be obtained from the sample data in any classical 

approach like method of maximum likelihood and method of moments if 

unknown. 

The relation in (12) is simply a member of the beta family of distributions. 

The advantage of taking the prior density to be conjugate lies in the fact 

that the likelihood function  xl | , the prior density  g  and the 

posterior density  xP |  are all of the same functional form thus ensuring 

mathematical tractability. 

By combining (11) and (12), we obtain the posterior density of   as  

      gxlxP ||    

    11
1|




qnypn
xP  . 

This implies that the posterior distribution of fecundability parameter   for 

the given sample observation  
n

xxxx ,,
,21
  is 

 
 

  0,0,10;1
,

1
|

11






qp

qnypnB
xP

qnypn  ,(13) 

which follows that  qnypnBeta  ,~ . The posterior fecundability 

model is an updated version of our prior knowledge about   in light of the 

observed random sample. 

The mean of the posterior distribution (13) is 
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 
qpy

pn
xE




|  . (14) 

To obtain Bayes’ estimators of fecundability parameter   under non-linear 

exponential (NLINEX) and linear-exponential (LINEX) loss functions 

using (8) and (9) now, we shall find the posterior expectation of c
e
  that is 

the expectation of c
e
  with respect to the posterior distribution in (13) as 

   



 

 dxPexeE
cc

||   

=
 

 





1

0

11
1

,

1
 de

qnypnB

qnypnc
 

 =
 

       


1

0

1ln1ln1exp
,

1
 dqnypnc

qnypnB
. (15) 

The integral in (15) is not readily solvable theoretically. For evaluating this 

integral we shall use the technique of Lindley’s [4] approximation. 

Approximate Bayes’ estimator of   using Lindley’s approximation 

According to Lindley and ratio of integrals of the form  

 
     

   
















de

deu
XI

L

L

 , (16) 

can approximately be evaluated as 

                    ˆˆˆˆˆˆˆˆ2ˆ
2

1ˆ 22
uLuuuXI  ,  (17) 

where  

  u a function of   

  L log-likelihood function of   

   logarithm of a prior distribution of    
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 ̂ maximum likelihood estimator (MLE) of   

   








ˆ

ˆ



 uu ,    








ˆ

2

2

ˆ



 uu ,    








ˆ

ˆ



 , 

   








ˆ

2

2

ˆ



 LL ,    








ˆ

3

3

ˆ



 LL  and  
 


ˆ

1ˆ2

L 
 . 

Evaluation of Bayes’ estimator of   by Lindley’s approximation 

The posterior expectation of c
e
  that is  xeE

c
|





  rewritten as 

   



 

 dxPexeE
cc

||ˆ  

=

     

   




















de

deu

L

L

, 

with 

   c
eu


  

       1lnln nynL  

            1ln1ln1,ln qpqpB  

   c
ceu


  

   c
ecu


 2  

 











1

11 qp
 

 
 22
1 







nyn
L  

 
 

 33
1

22









nyn
L  
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and

 

 

 22

2

1

1











nyn

.

 

Using the above expression in (17), the Lindley’s approximation gives  

   

 

 

  
























































































2

22

33

22

1

1
2

1

1

11
2

2

1
|









nyn

nyn

nyn

qp
c

ceexeEXI
ccc . 

Therefore,

 

 

 

  












































































































2

22

33

22

ˆ

ˆ1
ˆ

ˆ1
ˆ

2

ˆ1
ˆ

ˆ1

1

ˆ

1
2

.
2

1|ˆ









nyn

nyn

nyn

qp
c

c
exeE

cc , 

and hence the logarithmic posterior expectation of c
e
  that is 

 xeE
c

|ln




  as follows, 

 

 

 

  












































































































2

22

33

22
ˆ1

ˆ

ˆ1
ˆ

2

ˆ1
ˆ

ˆ1

1

ˆ

1
2

.
2

1lnˆ|ˆln










nyn

nyn

nyn

qp
c

c
cxeE

c . (18) 

Now using (18) in (8), the Bayes’ estimator of the fecundability parameter 

  under NLINEX loss function is 
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   

 

 

 

 

  qpyc

pn

nyn

nyn

nyn

qp
c

c

cc

c
NL























































































































2

2

ˆ1
ˆ

ˆ1
ˆ

2

ˆ1
ˆ

ˆ1

1

ˆ

1
2

.
2

1ln
2

1

2

ˆ
ˆ

2

22

33

22










 

(19)

 

Similarly, using (18) and (9), the Bayes’ estimator of   under LINEX loss 

function is 

 

 

  










































































































2

22

33

22
ˆ1

ˆ

ˆ1
ˆ

2

ˆ1
ˆ

ˆ1

1

ˆ

1
2

.
2

1ln
1ˆˆ










nyn

nyn

nyn

qp
c

c

c
BL

, (20) 

where 0n , 0p , 0q , 0c  and 



n

i

i
xy

1

. 

Noting that in (19) and (20), ̂  is a maximum likelihood estimator (MLE) 

of fecundability parameter   which is the reciprocal of a sample mean x  

defined earlier. 

The Bayes’ estimator under squared-error (SE) loss function in (10) is 

qpy

pn
S




̂  , (21) 

the mean of the posterior distribution in (13). 

Using (20) and (21), the Bayes’ estimator under NLINEX loss function 

may be rewritten as  

 
SBLNL

cc  ˆ2ˆˆ2  ,` (22) 

which is a linear combination of 
BL

̂  and S
̂ , Bayes’ estimators under 

linear-exponential (LINEX) and squared-error (SE) loss functions 

respectively. 
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4. Conclusion 

In this Section, an attempt has been made to study among the Bayes’ 

estimators of fecundability parameter NL
̂ , 

BL
̂  and S

̂  under non-linear 

exponential (NLINEX), linear-exponential (LINEX) and squared-error (SE) 

loss functions respectively as well as ̂ , a classical maximum likelihood 

estimator (MLE). Therefore, we may conclude that as follows; 

(i) The maximum likelihood estimator (MLE) is a reciprocal of sample 

mean x  that is 
x

1ˆ  . 

(ii) Bayes’ estimators under non-linear exponential (NLINEX), linear-

exponential (LINEX) and squared-error (SE) loss functions are related by the 

equation  
SBLNL

cc  ˆ2ˆˆ2  , and hence    2ˆ22ˆˆ  ccc
SBLNL

 , 

where NL
̂ , 

BL
̂  and S

̂  are Bayes’ estimators under NLINEX, LINEX and 

SE loss functions respectively. 

(iii) Among the three Bayes’ estimators, if any two of them are known then 

rest can be evaluated by (ii).  

(iv) The Bayes’ estimator under non-linear exponential (NLINEX) loss 

function is a linear combination of Bayes’ estimators under linear-

exponential (LINEX) and squared-error (SE) loss functions.  

(v) The Bayes’ estimator under non-linear exponential (NLINEX) loss 

function which is an asymmetric one, a linear combination of Bayes’ 

estimators of asymmetric linear-exponential (LINEX) and symmetric 

squared-error (SE) loss functions respectively.  

(vi) As c  tends to infinity both Bayes’ estimators under NLINEX and 

LINEX loss functions identical.  

(vii) As c  Bayes’ estimator under LINEX loss function 
BL

̂  tends to 

̂ , a maximum likelihood estimator (MLE). 

(viii) As 0p  and 0q , then Bayes’ estimator under squared-error 

(SE) loss function S
̂  tends to MLE. 
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(ix) As n , 
x

S

1
 , which implies that Bayes’ estimator under SE 

loss function tends to classical maximum likelihood estimator (MLE). 

(x) Bayes’ estimator under NLINEX loss function gives a general form for 

odd as well as even number c , as follows; 

   

   











.,.6,4,2,2ˆ2ˆ

;,.5,3,1,2ˆ2ˆ
ˆ

evenaniscwhenjjj

oddaniscwheniii

SBL

SBL

NL








  

(xi) One of the important features observed for the odd and even numbers 

of c  is that the Bayes’ estimator NL
̂  provides a weighted average of the 

Bayes’ estimators 
BL

̂  and S
̂  respectively.  
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